
Semantic Data-Driven Microservices
Ivan Salvadori, Alexis Huf and Frank Siqueira

Graduate Program in Computer Science
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, SC - Brazil

{ivan.salvadori,alexis.huf}@posgrad.ufsc.br, frank.siqueira@ufsc.br

Abstract—Nowadays, data is seen as one of the most valuable
assets of organizations. Representing and exposing data in a
suitable manner is mandatory for allowing consumers – either
human beings or software systems – to properly retrieve and
interpret such data. Web Services along with semantic Web
techniques may be adopted to address this issue. This paper
presents the semantic data-driven microservice, a cloud service
capable of providing linked data based on non-semantic data
sources. Its main goal is to work as a solution for publishing
linked data and for maximizing data reuse.

Index Terms—Semantic Web, Linked Data, Microservices, Web
Services, Data-driven Services.

I. INTRODUCTION

Corporations and governments produce, collect and store
large volumes of data. Properly managing the data lifecycle
is pivotal for the success of their projects and products. An
important step is properly organizing and exposing data, which
includes making decisions with regard to data structures and
formats, as well as mechanisms to allow internal and external
consumers to make use of data. Web technologies have been
used to address these features. However, there are a variety
of approaches that may be adopted to better handle data
exchange.

The approach most widely adopted by Web applications
consists in exposing data through web pages or data dumps.
Solutions better aligned with data exchange principles imple-
ment Web Services to expose data in a more suitable format
for being consumed by other software components. However,
few implementations follow principles such as universality
and decentralization. Universality means that the information
should be accessible through URIs, while decentralization
means that there is no central authority to create and expose
new data or to interlink existing one [1], avoiding the creation
of data silos.

Microservices are an emerging implementation approach
to SOA (Software Oriented Architecture) with architectural
attributes such as isolated state, loose coupling, and de-
ployment and operation characteristics [2]. The application
of the microservices approach implies the implementation
of functionality and management of data independently by
different services [3]. Microservices are modeled according to
the single responsibility principle, which works as a guide to
their implementation. Accordingly, a microservice architecture
along with semantic Web technologies may be adopted to

implement services that mainly manage the data lifecycle.
This argument is aligned with the vision of Pautasso and
Zimmermann [4], in which the Web may be seen as a graph
of linked resources shared between microservices.

Some proposals to tackle the problem of exposing data
on the Web have been published in the literature. Research
works such as Ontobroker [5] and DataOps [6] are focused on
publishing linked data based on non-semantic data, whereas
Linked REST APIs [7] and OntoGenesis [8] are focused on
augmenting legacy web services with semantic capabilities.
However, none of them is focused on maximizing data reuse,
which is one of the key features of the proposal presented in
this paper.

This work presents sdd-µs, a specialized cloud service
capable of converting non-semantic data into linked data. The
proposed service adopts the data-driven approach to implement
microservices as data providers. By using sdd-µs, there is no
need to implement a Web Service to expose a data source on
the Web. It converts simple data entries into semantic Web
resources that can be linked to other resources provided by
different data sources. In addition, it applies Mining Associ-
ation Rules techniques to identify patterns, which allows the
data structure to be changed in order to maximize data reuse.
Finally, it provides means to infer new knowledge based on
the available resources.

The remainder of this paper is organized as follows. Section
II summarizes the main concepts required for understanding
this work. Section III introduces the semantic data-driven mi-
croservice and shows in detail its architecture and capabilities.
Section IV compares this research work with related proposals
found in the literature. Section V presents an evaluation sce-
nario and experimental results. Finally, Section VI draws some
conclusions concerning this work and presents perspectives for
further improvement.

II. BACKGROUND

This section describes the main concepts in the context of
this research work.

A. Semantic Web and Linked Data

According to Bizer, Heath and Berners-Lee [9], the Web
has a great potential to be a global linked data space.
In this view, not only documents are made available and
linked to other documents, but also their contents. In order

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

to achieve this purpose, data is structured in RDF triples
(subject-predicate-object), in which the subject
represents the feature being described, the predicate represents
a characteristic of the subject, and the object is the value
assigned to this characteristic. RDF (Resource Description
Framework) is a data model for describing the semantics of
resources and interconnecting them with other related informa-
tion. By semantically describing resources, not only humans,
but also machines are able to infer the meaning of data
published on the Web. In addition, the semantic description
also facilitates data integration and reuse.

Berners-Lee [10] created the concept of linked data, which
represents a set of best practices for publishing structured
data on the Web. It includes: (i) the use of HTTP URIs to
identify and locate resources; (ii) providing useful information
from URIs, properly represented in a standard model; and
(iii) adding more links to related resources in order to obtain
further information. These principles aim at creating a single
global data repository, resulting in a network of connections
that forms the foundations of a new Web.

B. Data Linking

Data linking is the task of finding equivalent resources that
represent the same real-world object [11]. Data linking can
be formalized as an operation that takes collections of data
as input and produces a set of binary relations between their
entities as output.

The data linking problem can be divided into two main
groups: connection of data from heterogeneous sources; and
comparison of data for data cleaning, duplicate detection or
merge/purge records.

Data linking is similar to database record linkage and
to ontology schema matching, both widely explored in the
literature [12]–[14]. Data linking makes use of techniques
from these areas, which can be divided into three main
categories: value matching, individual matching and dataset
matching. The value matching technique applies to linking
entities that contain the same property value expressed in
different ways. The individual matching technique is used
for deciding whether two entities correspond to the same
real-world object by analyzing their property values. Dataset
matching takes into account all entities from two different data
sources in order to create an optimal alignment between them.

C. Data Services and Microservices

In a broad sense, data services may be seen as services
specialized in providing and managing data. Several terms
have been used to address these Web Services, such as: data
services, data providing services, data as a service, among
others. These terms have different definitions. Carey, Onose
and Petropoulos [15] define data services as a specialization
of Web Services capable of providing data by encapsulating a
wide range of data-centric operations. Speiser and Harth [16]
have a more restrictive notion, which protects data services
from any side effects, taking into account only read-only
operations. Vaculı́n et al. [17] present a different definition,

in which a data providing service encapsulates one or more
data sources into a set of Web Service operations. Paik et al.
[18] state that the idea of data as a service is providing a uni-
form access through a standard interface for data consumers,
bypassing the business logic layer.

Despite some differences, these notions have in common the
focus on exposing data through a Web interface. They also lead
to the separation between the business logic layer and the data
access layer as distinct services. As a result, a data-driven Web
Service could be seen as a particular implementation approach
to SOA, where data, instead of business functionalities, plays
the central role.

According to Zimmermann [2], microservices can be seen
as a particular implementation approach to build SOA applica-
tions, comprising both service development and deployment.
Thus, microservices present an evolutionary and complemen-
tary strategy to develop SOA applications, adhering to tenets
such as fine-grained interfaces, polyglot programming and
persistence, and decentralized continuous delivery.

Microservices may interact with their peers by using Web
Services and Web APIs, or by using a message broker that
supports message queues and allows communication through
publisher/subscriber mechanisms. Microservices can also em-
ploy semantic Web Services technology, resulting in semantic
microservices. The current trend to implement different ser-
vices in the context of software containers, for example, is
more of a coincidence than a direct consequence of microser-
vice design [19].

III. SEMANTIC DATA-DRIVEN MICROSERVICE

In recent years, the interest in data produced and published
by companies and governments has increased. Such data has
not been necessarily attached to a specific logic layer. In this
context, possible consumers are interested only in accessing
the data, and not interacting with business procedures.

The vast majority of Web Services are implemented accord-
ing to two main approaches: SOAP and REST. The former
is defined in terms of the messages exchanged between a
service provider and its clients. The latter provides a uniform
interface to manage resources by following the semantics of
the HTTP protocol. However, both approaches are used to
expose functions defined in an application logic layer [18].

According to Pautasso et al. [20], microservices should be
developed by following the business-driven service design,
which focuses on business goals. However, the authors keep
an open question about the existence of a microservice respon-
sible for providing all customer data. This question is not that
simple to answer, since it combines aspects such as decou-
pling and granularity, which are handled mostly by modeling
microservices around bounded contexts that implement a given
domain logic. However, even data-driven implementations are
domain-oriented. In a broad sense, a business logic layer
implements a functionality based on user expectation. The
same can be said about data-driven services, which provide
data aligned with a given consumer expectation.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

Configuration

Data Manager

sdd-µs

Non-semantic
datasets

ABox

Triple
Store

File
System

JSON
Adapter

XML
Adapter

CSV
Adapter

Tbox
(Domain ontology)

Semantic
Mapping

Inference Module
OWL Lite

Rule Engine
SPARQL
Rewriter

Ontology Manager

Reusability Module
mar4rdf

(Mining Association
Rules for RDF)

Service Interface Web API

SPARQL
Endpoint

Data
Dump

 Resource
Endpoint

 Ontology
 Endpoint

 Hydra Documentation

Fig. 1: The reference architecture

Considering the set of characteristics that differentiate mi-
croservices from other implementation approaches – such as
single-responsibility units, isolated state, distribution, elasticity
and loose coupling – the microservices architecture turns out
as a suitable alternative to develop data-driven services. By
explicitly separating data from business operations in distinct
microservices, users can freely interact with data without the
restrictions imposed by business operations. Due to this char-
acteristic, data may be more effectively reused for different
purposes.

That been said, sdd-µs adopts the data-driven approach,
which implies that the service does not implement any business
operations, but only functionalities for managing the lifecycle
of read-only data. Its main goal is to facilitate publishing
linked data based on a non-semantic dataset. Consumers can
interact with the data through multiple service interfaces in
order to fulfill different expectations and uses. However, what
differentiates the sdd-µs from other proposals is the capability
of optimizing data in order to improve its reusability. Two
processes are performed to achieve such a feature, which are
semantic enrichment and resource structure optimization. In
addition, sdd-µs provides an efficient support for inference,
which allows refining the data retrieval behavior based on
conceptual terminologies.

A. Semantic Enrichment

Producing semantically enriched data is the first step to-
wards the Web of data. However, most of the information
produced by governments, universities and enterprises is not
available as such. Usually, data is not described by an ontology
and is not structured as RDF triples, posing obstacles to data
integration and reuse. In order to address this issue, sdd-
µs provides the means to semantically enrich datasets. As
depicted by Fig. 1, sdd-µs accepts as input a configuration
and a non-semantic dataset. The configuration contains a TBox
(i.e., a set of terminological statements that conceptualize the
dataset) and a semantic mapping that associates attributes of
a non-semantic dataset with terms defined in the TBox.

{
"@context": {

"onto": "http://example.com/ontology/",
"@type": "onto:ClassA",
"CSV_colunmHeaderA": "onto:propA",
"CSV_colunmHeaderB": "onto:propB",
"CSV_colunmHeaderC": "onto:propC",
"CSV_colunmHeaderD": "onto:propD"

}
}

(a) Semantic mapping file example

Resource1 a ont:ClassA .
Resource1 ont:propA value1 .
Resource1 ont.propB valueX .
Resource1 ont.propC valueY .
Resource1 ont.propD valueZ .

Resource2 a ont:ClassA .
Resource2 ont:propA value2 .
Resource2 ont.propB valueX .
Resource2 ont.propC valueY .
Resource2 ont.propD valueZ .

Resource3 a ont:ClassA .
Resource3 ont:propA value3 .
Resource3 ont.propB valueX .
Resource3 ont.propC valueY .
Resource3 ont.propD valueZ .

Materialized RDF

Non-semantic dataset

value1
value2
value3

valueN

valueX
valueX
valueX

valueXn

valueY
valueY
valueY

valueYn

R1:
R2:
R3:

Rn:
ont:propA ont:propB ont:propC

ont:ClassA

valueZ
valueZ
valueZ

valueZn

ont:propD

...

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

(b) RDF materialization example

Fig. 2: Semantic Mapping and the resulting RDF materializa-
tion example

There are a variety of approaches for accessing the dataset
managed by a data provider [21]. Data materialization and
virtual integration are broadly adopted. In the former, the data
is previously loaded, materialized according to a previously
defined schema and stored. In the latter approach the data
remains in the source and such materialization is performed
to answer a query at runtime, without physically storing the
data. The sdd-µs adopts the materialization approach, which
means that the dataset is converted into RDF triples and stored
as files or in a triple store when the service is initialized for
the first time. Once the non-semantic dataset is converted into
RDF triples, it is not used anymore. It is important to mention
that sdd-µs also accepts a materialized RDF dataset as input.
In this case, the materialization step can be skipped.

Fig. 2 (a) shows an example of the semantic mapping
for enriching a CSV file. The mapping is defined in JSON-
LD syntax, in which keys are represented by CSV column
headers and values are represented by the properties’ URIs
defined in the ontology. The reserved key @type is used to
define a semantic class for each CSV record. In this example,
ont:propA ont:propB, ont:propC and ont:propD,
properly defined in the domain ontology, were associated with
CSV column headers in order to be part of an independent Web
resource instance of the semantic class ont:ClassA. Ad-

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

vanced configurations can be applied to handle more complex
mapping designs, such as mapping more than on CSV record
per Web resource and hierarchical structures. The resulting
RDF materialization can be seen in Fig. 2 (b).

Once materialized, the dataset can be retrieved through
multiple service interfaces, which include a SPARQL end-
point, a data dump interface and a Web API. The SPARQL
endpoint1 allows the execution of SPARQL queries on the
dataset through HTTP GET requests. The data dump interface
allows consumers to download a file that consists of all stored
triples. Finally, the Web API is capable of providing linked
data documents (entities with unique HTTP URLs) as well as
a Hydra [22] documentation that describes how to retrieve such
entities. Entities may be retrieved in a variety of formats, such
as XML/RDF, Turtle, JSON-LD, among others, according to
content negotiation. In addition, the Web API interface allows
the domain ontology to be managed, which permits adding or
changing concepts.

B. Support for Inference

Reasoning is an important feature, specially for data-driven
implementations, which are focused on data and on the po-
tential knowledge that may be inferred. Moreover, it may be
seen as the most important reason to adopt semantic Web tech-
niques. This feature allows the derivation of new facts from
those explicitly present in the data and the concepts defined
in the TBox. Such definitions can be used to provide distinct
perspectives over the data and to empower data integration.
The former may be implemented by defining class hierarchy
such as subclasses, or by modeling restrictions to create new
concepts based on specific conditions. The latter may be
implemented by defining equivalences between classes and
properties as well as between resources that represent the same
object in real world, usually expressed with owl:sameAs. It
can also be seen as a built-in mechanism for dealing with data
heterogeneity.

For this purpose, the Inference module provides reasoning
support based on two different implementations: Apache Jena
OWL Rule Engine and a SPARQL rewriter. The former uses
the Apache Jena implementation2 to perform inferences. The
latter, a contribution of this work, rewrites a SPARQL query
that requires reasoning into a new query that incorporates
such elements based on a domain ontology analysis. Rewriting
queries represents an alternative to the standard inference
support offered by Jena. This alternative is necessary given
that Jena may present a significant performance degradation,
depending on the size of the dataset and on the complexity of
the query.

Fig. 3 shows a simple example of query rewriting. R1
presents a materialized resource, and T1 shows a TBox that
defines an equivalence between two properties. Q1 presents
a SPARQL query that requires inference support to retrieve
R1, since the resource has been previously materialized with

1 http://www.w3.org/TR/sparql11-protocol
2 https://jena.apache.org/

an equivalent property. Finally, Q2 presents the resulting
SPARQL query after the rewriting process. Currently, the
query rewriter supports class and property equivalence, sub-
classes, as well as owl:sameAs statements.

R1: <Resource1> a <http://example.com/onto/ClassA> .
<Resource1> <http://example.com/onto/propA> "value1" .

T1: @prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix onto: <http://example.com/onto/> .
@prefix anotherOnt: <http://example.com/anotherOnt/> .
onto:propA a owl:DatatypeProperty .
onto:propA owl:equivalentProperty anotherOnt:propX

Q1: SELECT ?resource WHERE {
?resource anotherOnt:propX "value1" .

}

Q2: SELECT ?resource WHERE {
{ ?resource onto:propA "value1" } UNION
{ ?resource anotherOnt:propX "value1" }

}

Fig. 3: Query rewriting example

C. Resource Structure Optimization

Optimizing the structure of data is not a trivial task. It
requires qualified specialists that have deep knowledge on the
specific domain and software tools to assist them in this pro-
cess. Though, even for a specialist, restructuring data in such
a way that information would be better represented through
linked resources may be something difficult to accomplish.
By using data mining techniques, sdd-µs provides a means to
optimize the initial RDF materialization in order to achieve
higher levels of data reuse.

An important part of the optimization process is the dis-
covery of association rules, which consists in determining
relationships between sets of items in a very large database.
Agrawal and Srikant [23] state this problem as follows.
Let I = {i1, i2, ..., im} be a set of m items. Let D =
{t1, t2, ..., tn} be a set of n transactions, each one identified
by a unique transaction id (TID). Each transaction t consists
of a set of items from I and an itemset I is contained in a
transaction t ∈ D if I ⊆ t. The support of an itemset I is the
percentage of transactions in D containing I . Association rules
are of the form r : I1

c−→ I2, with I1, I2 ⊂ I and I1 ∩ I2 = φ.
Given the user defined minimum support (minsup) threshold,
the problem of mining association rules can be divided in two
sub-problems: (i) find all itemsets in D with support greater
or equal to minsup and (ii) for each itemset found, generate
all association rules I2

c−→ I1 − I2, where I2 ⊂ I1. That
been stated, sdd-µs adopts the A-Close algorithm, proposed
by Pasquier et al. [24], as implemented in the Open-Source
Data Mining Library [25].

To properly explain the structure optimization process,
consider the following example. Table I presents three records,
each one containing seven properties in which their values
share some level of association. The process starts with
converting each record into a transaction, which implies con-
verting its values into a set of items as an ordered numerical

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

TABLE I: Example of records about employees

Property R1 R2 R3
employeeName Alice John Bob
employeeSecNumber 123 456 789
employeeBirthDate 01/01/1952 01/02/1954 01/03/1950
companyName Void Corp Void Corp Acme Corp
companyLocation São Paulo São Paulo New York
salary 2.000 1.000 1.000
admissionDate 01/01/2018 01/01/2018 01/01/2018

0 1 2 3 4 5 6
 0 3 4 7 8 9 10
 0 7 11 12 13 14 15

0 → 01/01/2018
1 → 2000
2 → 01/01/1952
3 → São Paulo
4 → Void Corp
5 → 123
6 → Alice
7 → 1000
8 → 01/01/1954
9 → 456
10 → John
11 → 01/01/1950
12 → New York
13 → Acme Corp
14 → 789
15 → Bob

Indexed values

R1:t1
R2:t2
R3:t3

Iteration 1, minsup=1.0

Association Rule: [0] [t1, t2, t3]
pattern.level = 1 (noise) → remove item
resolveProperty(0, {t1,t2,t3}) = admissionDate
remove(admissionDate)

1 2 3 4 5 6
 3 4 7 8 9 10
 7 11 12 13 14 15

Iteration 2, minsup=0.75

Association Rule:: not found

1 2 3 4 5 6
 3 4 7 8 9 10
 7 11 12 13 14 15

Iteration 3, minsup=0.50

Association Rule: [7] [R2, R3]
pattern.level = 1 (noise) → remove item
resolveProperty(7,{t2, t3}) = salary
remove(salary)
Association Rule:: [3 4] [t1, t2]
pattern.level = 2 →(valid pattern)
resolveProperty(3, {t1,t2}) = companyLocation:p1
resolveProperty(4, {t1,t2}) = companyName:p2
createPattern(p1, p2)

 2 5 6
 8 9 10
11 14 15

Iteration 4, minsup=0.25

Association Rule: [2 5 6] [t1]
pattern.level = 3 →(valid pattern)
resolveProperty(2, t1) = employeeBirthDate:p3
resolveProperty(5, t1) = employeeSecNumber:p4
resolveProperty(6, t1) = employeeName:p5
createPattern(p3, p4, p5)

t1
t2
t3

t1
t2
t3

t1
t2
t3

Fig. 4: Mining association rules example

vector. This step consists in creating an index that associates
each literal value with a unique integer number, as shown in
Fig. 4. These vectors are organized into a single matrix used
as input to the A-Close algorithm.

It is necessary to perform several iterations in order to
recognize frequent closed itemsets, and then generate asso-
ciation rules in different support thresholds. Iterations start
from the maximum support and will be decreased according
to a configurable parameter. In this example, the decrease rate
was set to 0.25. The first iteration is setup with minimal
support to 1.00, which results in finding the association rule
[0] in t1, t2, t3, with level 1. The level represents the
number of items in a given itemset. Only association rules
with level equal or greater than 2 are eligible to be part
of a pattern, otherwise they are considered noise. The next
step is to find the properties associated with the resulting
itemset. In this case, the itemset [0] corresponds to the
literal value 01/01/2018, which in its turn is associated
with the property admissionDate for all transactions. Finally,
this item is removed from all itemsets of the initial matrix. It

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix onto: <http://example.com/ontology/> .

<R1> rdf:type onto:EmployeeReport .
<R1> onto:employeeName "Alice" .
<R1> onto:employeeSecNumber "123" .
<R1> onto:employeeBirthDate "01/01/1950" .
<R1> onto:companyName "Void Corporation" .
<R1> onto:companyLocation "São Paulo" .
<R1> onto:salary "2000" .
<R1> onto:admissionDate "01/01/2018" .

<R2> rdf:type onto:EmployeeReport .
<R2> onto:employeeName "John" .
<R2> onto:employeeSecNumber "456" .
<R2> onto:employeeBirthDate "01/02/1950" .
<R2> onto:companyName "Void Corporation" .
<R2> onto:companyLocation "São Paulo" .
<R2> onto:salary "1000" .
<R2> onto:admissionDate "01/01/2018" .

<R3> rdf:type onto:EmployeeReport .
<R3> onto:employeeName "Bob" .
<R3> onto:employeeSecNumber "789" .
<R3> onto:employeeBirthDate "01/03/1950" .
<R3> onto:companyName "Acme Corporation" .
<R3> onto:companyLocation "New York" .
<R3> onto:salary "1000" .
<R3> onto:admissionDate "01/01/2018" .

R1

R2

R3

R4

R5

R6

R7

R8

R1

R2

R3

<R1> rdf:type onto:EmployeeReport .
<R1> onto:hasEmployee <R4> .
<R1> onto:hasCompany <R5> .
<R1> onto:salary "2000" .
<R1> onto:admissionDate "01/01/2018" .

<R2> rdf:type onto:EmployeeReport .
<R2> onto:hasEmployee <R6> .
<R2> onto:hasCompany <R5>.
<R2> onto:salary "1000" .
<R2> onto:admissionDate "01/01/2018" .

<R3> rdf:type onto:EmployeeReport .
<R3> onto:hasEmployee <R7> .
<R3> onto:hasCompany <R8> .
<R3> onto:salary "1000" .
<R3> onto:admissionDate "01/01/2018" .

<R4> rdf:type onto:Employee .
<R4> onto:employeeName "Alice" .
<R4> onto:employeeSecNumber "123" .
<R4> onto:employeeBirthDate "01/01/1950" .

<R5> rdf:type onto:Company .
<R5> onto:companyName "Void Corporation" .
<R5> onto:companyLocation "São Paulo" .

<R6> rdf:type onto:Employee .
<R6> onto:employeeName "John" .
<R6> onto:employeeSecNumber "456" .
<R6> onto:employeeBirthDate "01/02/1950" .

<R7> rdf:type onto:Employee .
<R7> onto:employeeName "Bob" .
<R7> onto:employeeSecNumber "789" .
<R7> onto:employeeBirthDate "01/03/1950" .

<R8> rdf:type onto:Company .
<R8> onto:companyName "Acme Corporation" .
<R8> onto:companyLocation "New York" .

(a) Initial Materialization (c) Afer Structure Optimization

(b) Initial Graph (d) Linked Resources

Fig. 5: Example of a resource structure optimization result

is important to mention that removing previously found closed
itemsets is essential to properly recognize further association
rules using lower support thresholds. Iteration 2 is setup with
minsup=0.75, however, there is no association rule that
is identified using this threshold. Iteration 3 results in two
association rules. The first one is considered noise, which
results in removing all items associated with the property
salary. The second one is considered valid and its items are
resolved to properties to be part of a pattern. In this case, a new
semantic class is created and properties companyLocation
and companyName will be restructured in an independent
resource. In iteration 4, properties employeeBirthDate,
employeeSecNumber and employeeName are also com-
bined to be part of an independent resource.

The aforementioned steps are performed to recognize asso-
ciation rules and then generate patterns that essentially create
new semantic classes and objectProperties. Based on
these new concepts, a new RDF materialization is performed
in order to update the dataset with the resulting structure
optimization. Fig. 5 (a) describes the initial RDF material-
ization, which basically translates the records of Fig. I in
resources. This literal translation results in a disconnected
graph, as shows Fig. 5 (b). However, as Fig. 5 (c) shows,
the new RDF materialization contains new resources that
aggregate properties according to the resulting patterns. These
new resources are then connected with existing ones, resulting
in a connected graph of linked resources, as describes Fig.
5 (d). Despite the fact that, for this example, the resulting
optimized materialization required more triples to represent the
same information, a very large dataset with a significant level
of data overlap would result in a smaller optimized dataset.
Moreover, datasets in which there is no clear separation of
concepts or whose records have no apparent relation will also
benefit from the resource structure optimization.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

IV. RELATED WORK

As pointed out by Marjit et al. [26], the majority of the
data available on the Web is stored in formats other than RDF,
which are called legacy data. There have been several research
works aimed at publishing legacy data as linked data on the
Web. Ontobroker [5] is a semantic middleware that works
as an Integration Engine. It exposes data from information
sources – such as relational database systems, Web Services,
and Excel sheets – through a SPARQL endpoint. Instead of
materializing RDF, Ontobroker provides data wrappers to map
data in the original format. However, reasoning capabilities are
not supported.

DataOps [6] proposes the Anything-to-RDF data integra-
tion, a toolkit that supports the integration of both semantic
and non-semantic data. It provides means to explore and
visualize the resulting data based on a SPARQL endpoint
and proprietary formats. DataOps materializes RDF based on
a mapper, which consolidates new data with existing data
instances by establishing owl:sameAs links. Despite being
able to create links among materialized resources, DataOps
does not support inference over the data.

Another approach to provide linked data based on non-
semantic sources is augmenting legacy Web Services with
semantic capabilities, which include semantic descriptions as
well as semantic data representations. This approach mainly
aims at improving the understanding of service operations and
therefore compositions.

Linked REST APIs (LRA) [7] is a conceptual framework
for REST service integration based on linked data models.
It introduces a vocabulary that enables the semantic repre-
sentation of REST services, including authentication mecha-
nisms, quality, and relationships between inputs and outputs.
LRA provides means to answer SPARQL queries through a
fully automatic process. Reasoning capabilities are also sup-
ported, allowing to perform inferences for owl:sameAs and
owl:equivalentClass. Authors argue that the reason for
the limited adoption of semantic Web techniques is related
to the fear developers have to use it. However, SPARQL is
not widely known among Web Service developers, therefore
it may not be the most suitable interface to expose data.

OntoGenesis [8] is an architecture for semantically enrich-
ing representations provided by data services. Its goal is to
semantically enrich syntactic representations by automatically
associating concepts defined in domain ontologies with rep-
resentations. Its architecture has two main components: the
semantic adapter and the OntoGenesis Web API. The former
should be used along with legacy Web Services to automati-
cally send requests containing the representations required by
the user to the OntoGenesis Web API. The latter implements
an engine to semantically enrich these representations. The
enrichment process is performed by a property matching
mechanism, which reuses well-known concepts defined by
external sources and public ontologies. Despite being able to
semantically enrich data representations, Ontogenesis does not
support inference capabilities.

Moreover, some patterns have emerged to address the de-
velopment of Web services in the context of data services.
Database-is-the-Service [27] is a pattern that considers the
database as a service by itself. Despite the fact that this pattern
does not separate the business layer from the data access layer
in distinct services, it promotes data as the most valuable asset.

The microservice architecture has also been used along
with data science techniques. Thiele et al. [28] adopt mi-
croservices to expose entities generated by machine learning-
based processes over a network. Zhang et al. [29] propose an
analytics-focused API design for data services, which provides
context information about the origin, scope, and historical
manipulations on a certain dataset, allowing to share and reuse
historical data exploration process and derived data. Those
patterns are aimed at providing solutions for specific domains,
in contrast to this proposal that may be applied to a general
data publishing problem.

V. EVALUATION

In this section we describe our experimental methodology
and analyze the obtained results. The objective of this eval-
uation is to measure the efficiency of the resource structure
optimization process regarding data reuse and its cost in
terms of processing time. In addition, this evaluation aims at
identifying the impact of performing reasoning, by comparing
two different inference approaches: Jena OWL Rule Engine
and SPARQL rewriting. In order to allow the replication of
experimental results, source code and instructions for setting
up this evaluation are available in a public repository3.

The evaluation used real data from two distinct data
providers. The first dataset is provided by the Public Security
Secretariat of the state of São Paulo (SSP-SP)4 - Brazil.
The SSP/SP system publishes police reports that describe
suspicious death, intentional homicide, robbery followed by
murder, car theft, among others. Information about the report
such as location, police station and date of the incident are
available. For this evaluation, only police reports that describe
car theft were considered. A total of 175 CSV files have
been downloaded, containing reports from 2003 to 2017.
The second dataset is provided by The NYC Open Data
portal5, which publishes a variety of datasets, including data
about business, health, education, government, environment,
among others. For this evaluation, was considered the Parking
Violations (NYC- PVI) dataset6 - Fiscal Year 2019, which
describes information such as vehicle details, data and location
in which the violation took place, type of violation, among
others. This dataset is provided as a single CSV file, which
contains violations from January 1, 2018 to September 10,
2018, and is monthly updated.
3 https://salvadori.bitbucket.io/projects/sddms/
4 http://www.ssp.sp.gov.br/transparenciassp/
5 http://opendata.cityofnewyork.us/
6 https://data.cityofnewyork.us/City-Government/Parking-Violations-Issued-

Fiscal-Year-2019/pvqr-7yc4

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

Reusable ResourcesLinks Data

(a)

Reusable ResourcesLinks Data

(b)

T
im

e
 (

m
s)

(c)

Fig. 6: Structure resource optimization results: (a) SSP-SP dataset, (b) NYC- PVI dataset and (c) processing time

Fig. 7: Query response time: (a) no inference support, (b) Jena inference enabled and (c) sdd-µs query rewriter

The experiment was executed using the computational in-
frastructure provided by the Cloud Computing for Coopera-
tion7, with the following configuration: a dedicated server with
24 Intel Xeon X5690 processors at 3.47GHz and 148 GiB of
primary memory, running the CentOS-7 operating system and
openjdk version 1.8.0 141 with maximum heap size set to 2
GiB for both the structure resource optimization and sdd-ms
query rewriter evaluations.

Fig. 6 shows the results regarding the resource structure
optimization process. The optimization of the SSP-SP dataset
is represented by Fig. 6 (a). The initial materialization required
24.057 million triples to represent the information. In the
initial materialization, each CSV record was converted into
a single RDF resource, which holds all mapped properties. As
a result of the structure optimization, a new materialization
was created with all recognized data patterns as well as the
necessary links to connect the original data with the new
resources. Those patterns are represented by resources, which
are instances of new concepts. The optimized materialization
required 21.292 million triples to represent the same infor-
mation, resulting in a reduction of 11.7%. However, the most

7 http://www.c3lab.tk.jku.at

important result is that it was able to properly reorganize the
information among more reusable resources. Three patterns
were recognized for this dataset. The first one aggregates
properties that describe the stolen vehicle. The second one
aggregates properties that describe the police station respon-
sible for the report. The last one represents the common
information about the location where the incident took place,
which includes region, street and city name.

For the NYC-PVI dataset, the optimization resulted in a
significant reduction of the materialized dataset, as shows Fig.
6 (b). Two patterns were recognized for this dataset. The first
one aggregates properties that describe the vehicle. The second
one aggregates properties that describe the violation type along
with the street name. While this optimization resulted in a
significant reduction of the resulting dataset, it came up with
a pattern that does not necessary represent a common sense
reorganization. The reason for that is the lack of data to
properly recognize the pattern, however, it represents the real
nature of the data. In other words, the resulting patterns are
result of the data, and do not necessarily follow a given domain
logic.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

@prefix onto: <http://www.public-security-ontology/> .
@prefix anotherOnto: <http://www.anotherOntology.com/> .
Q1: SELECT ?p ?o { <{resource_URI}> ?p ?o}

Q2: SELECT ?resource WHERE {
?resource a onto:TheftAutoReport .
?resource onto:timeOfDay "EVENING" .

} limit 100 offset 0;

Q3: SELECT ?resource WHERE {
?resource a onto:CriminalReport .
?resource anotherOnto:periodOfDay "EVENING" .

} limit 100 offset 0;

Fig. 8: SPARQL queries

Fig. 6 (c) shows the processing time to perform the op-
timization for each dataset. The size of the dataset has an
important effect on the processing time. The spikes represent
the points where vectors of transactions were recreated due
to a found pattern or a noise. It also explains the decreasing
processing time behavior, in which the main factor is the size
of the matrix rather than the minsup.

This evaluation also takes into consideration the Proces-
sor module, comparing the Apache Jena OWL Rule En-
gine with the sdd-µs SPARQL rewriter. In order to com-
pare these two inference approaches, three queries, shown
by Fig. 8, were evaluated. These three queries were issued
every time a new Web resource was inserted into the RDF
dataset throughout the materialization process for the SSP-
SP dataset. Query Q1 only retrieves the latest inserted Web
resource, Q2 filters a collection of resources based on property
"timeOfDay", and Q3 produces the same result of Q2, how-
ever it requires reasoning for inferring the equivalence between
"TheftAutoReport" and "CriminalReport".

Fig. 7 shows the results of this comparison. In Fig. 7 (a),
Q1, Q2 and Q3 were executed without inference support. One
can see that Q3 produces no results as it requires reasoning
features. However, considering all the 24.057 million triples
according to the initial materialization8, the execution time
for Q1 is close to zero milliseconds, while for Q2 it is more
than 100 milliseconds. However, when the Jena OWL Rule
Engine is enabled, the time required for Q3 to produce the
expected results increases sharply, as can be seen in Fig. 7 (b).
It is worth noticing that, regardless of the query, the execution
time was similar. Approximately 10 seconds were required
to execute each query over 3 million triples. Finally, Fig. 7
(c) shows the result for the sdd-µs Query Rewriter. In this
approach, the execution times for Q1 and Q2 were similar
when compared to the execution without inference support.
Moreover, the required time to execute Q3 was in the interval
between 500 and 600 milliseconds.

This evaluation shows that the adoption of the proposed
solution results in a significant data reuse. The optimization
process was able to convert the datasets, originally represented
by a collection of isolated resources into connected graphs. By

8 There were no significantly different results in the initial and the optimized
materialization for executing the queries used in this evaluation.

adopting the proposed inference support, the time to perform
inferences was drastically reduced when compared to Apache
Jena. It is worth to mention that despite the inference times
seem to be constant as shows Fig. 7 (c), actually they are
linear when considered larger datasets.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the semantic data-driven microservice,
a service capable of providing linked data based on non-
semantic data sources. By using sdd-µs there is no need to
implement new Web Services to expose data on the Web.
The sdd-µs provides an efficient inference support for issuing
queries on large semantic datasets. Moreover, it is able to
maximize the reuse of data by performing a resource structure
optimization process to identify data patterns. Based on these
data patterns, resource properties are combined in order to
create new semantic concepts. Then, all resources with those
properties will be restructured, resulting in a connected graph
of linked resources.

Evaluation experiments showed the efficiency of the pro-
posed optimization process, through which data patterns were
recognized in real datasets, resulting in a significant reuse
of data. In addition, the evaluation showed that Jena’s Rule
Engine is not suitable for performing even simple inferences.
By rewriting the SPARQL queries, sdd-µs query rewriter
dramatically reduced the execution time, allowing the use of
inference, even for a small set of axioms.

Assuming that data can also be modeled as a monolith,
microservices may be adopted as a suitable solution for dis-
tributing data across several small service providers. However,
some important characteristics associated with microservices,
such as disposability and native cloud orientation, may conflict
with linked data principles. Disposability means that a given
microservice can be removed from the infrastructure if it
is no longer useful. Native cloud-oriented applications refer
to software designed to be deployed in a cloud computing
infrastructure. It often implies elasticity, which makes use of
transient computing resources. On the other hand, linked data
assumes that URLs that connect Web resources are permanent.
That said, the adoption of microservices for publishing linked
data requires special attention to these details, otherwise, the
quality of linked data publishing may be drastically affected.

In future work we intend to adapt the Reusability Module to
support other mining algorithms. The current implementation
adopts the A-Close algorithm for mining association rules.
However, a variety of other algorithms with a similar purpose
are available and may result in better results depending on
characteristics of the dataset to be optimized. Additionally,
adjustments in the algorithm parameters may yield better
results in certain cases. Therefore, sdd-µs could apply the
most suitable algorithm according to the characteristics of
the dataset. New features are to be implemented, such as
considering OWL restrictions in the Inference Module and
linking Web resources managed by several sdd-µs instances
running in a service container.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

ACKNOWLEDGMENT

This work was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001 and Programa de Doutorado
Sanduı́che no Exterior (PDSE) 88881.131816/2016-01.

REFERENCES

[1] T. Berners-Lee, “Long Live The Web,” Scientific American, vol. 303,
no. 6, pp. 80–85, dec 2010.

[2] O. Zimmermann, “Microservices tenets: Agile approach to service
development and deployment,” Computer Science - Research and De-
velopment, nov 2016.

[3] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[4] C. Pautasso and O. Zimmermann, “The Web as a Software Connector:
Integration Resting on Linked Resources,” IEEE Software, vol. 35, no. 1,
pp. 93–98, jan 2018.

[5] J. Angele, “OntoBroker: Mature and approved semantic middleware,”
Semantic Web, vol. 5, no. 3, pp. 221–235, 2014.

[6] C. Pinkel, A. Schwarte, J. Trame, A. Nikolov, A. S. Bastinos, and
T. Zeuch, “DataOps: Seamless End-to-End Anything-to-RDF Data Inte-
gration,” in The Semantic Web: ESWC 2015 Satellite Events. Springer,
2015, pp. 123–127.

[7] D. Serrano, E. Stroulia, D. Lau, and T. Ng, “Linked REST APIs:
A Middleware for Semantic REST API Integration,” in 2017 IEEE
International Conference on Web Services (ICWS). IEEE, jun 2017,
pp. 138–145.

[8] B. C. N. Oliveira, A. Huf, I. Salvadori, and F. Siqueira, “Automatic
Semantic Enrichment of Data Services,” in International Conference
on Information Integration and Web-based Applications and Services -
iiWAS ’17, 2017.

[9] C. Bizer, T. Heath, and T. Berners-Lee, Linked data-the story so far.
IGI Global, 2009, pp. 205–227.

[10] T. Berners-Lee, “Linked Data – Design Issues,” 2011. [Online].
Available: https://bit.ly/21MR3Zt

[11] A. Ferrara, A. Nikolov, and F. Scharffe, “Data Linking for the Semantic
Web,” International Journal on Semantic Web and Information Systems,
vol. 7, no. 3, pp. 46–76, Jan. 2011.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 1, pp. 1–16, Jan. 2007.

[13] J. Euzenat and P. Shvaiko, Ontology Matching. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[14] H. Köpcke and E. Rahm, “Frameworks for entity matching: A
comparison,” Data Knowl. Eng., vol. 69, no. 2, pp. 197–210, Feb.
2010. [Online]. Available: http://dx.doi.org/10.1016/j.datak.2009.10.003

[21] A. Doan, A. Halevy, and Z. Ives, Principles of data integration.
Elsevier, 2012.

[15] M. J. Carey, N. Onose, and M. Petropoulos, “Data services,” Commu-
nications of the ACM, vol. 55, no. 6, jun 2012.

[16] S. Speiser and A. Harth, “Integrating Linked Data and Services with
Linked Data Services,” in The Semantic Web: Research and Applica-
tions. Springer, 2011.

[17] R. Vaculı́n, H. Chen, R. Neruda, and K. Sycara, “Modeling and discov-
ery of data providing services,” in Proceedings of the IEEE International
Conference on Web Services, ICWS 2008. IEEE, sep 2008, pp. 54–61.

[18] H.-y. Paik, A. L. Lemos, M. C. Barukh, B. Benatallah, and A. Natarajan,
“Web Services – Data Services,” in Web Service Implementation and
Composition Techniques. Springer, 2017, pp. 93–147.

[19] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 76–80, sep 2016.

[20] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
“Microservices in Practice, Part 1: Reality Check and Service Design,”
IEEE Software, vol. 34, no. 1, pp. 91–98, jan 2017.

[22] M. Lanthaler, “Creating 3rd Generation Web APIs with Hydra,” in
Proceedings of the 22nd International World Wide Web Conference
(WWW2013). International World Wide Web Conferences Steering
Committee, may 2013, pp. 35–37.

[23] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent
closed itemsets for association rules,” in Proceedings of the 7th Interna-
tional Conference on Database Theory, ser. ICDT ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 398–416.

[25] P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z. Deng, and H. T. Lam, “The SPMF Open-Source Data Mining
Library Version 2,” in Machine Learning and Knowledge Discovery in
Databases. Springer International Publishing, 2016, pp. 36–40.

[26] U. Marjit, K. Sharma, A. Sarkar, and M. Krishnamurthy, “Publishing
legacy data as linked data: a state of the art survey,” Library Hi Tech,
vol. 31, no. 3, pp. 520–535, sep 2013.

[27] A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso,
“The database-is-the-service pattern forÂ microservice architectures,”
in Information Technology in Bio- and Medical Informatics. Springer,
2016, pp. 223–233.

[28] T. Thiele, T. Sommer, S. Stiehm, S. Jeschke, and A. Richert, “Exploring
Research Networks with Data Science: A Data-Driven Microservice
Architecture for Synergy Detection,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW). IEEE, aug 2016, pp. 246–251.

[29] Y. Zhang, L. Zhu, X. Xu, S. Chen, and A. B. Tran, “Data Service API
Design for Data Analytics.” Springer International Publishing, 2018,
vol. 10969, pp. 87–102.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/COMPSAC.2019.00065

https://doi.org/10.1109/COMPSAC.2019.00065

