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Abstract. The enormous volume and high variety of information that
is constantly produced by computing systems requires storage technolo-
gies able to provide high processing velocity and data quality. The suit-
ability for modeling complex data and for delivering performance are
characteristics that are making graph databases become very popular.
However, existing limitations still prevent database management systems
that adopt the graph model to fully ensure data consistency, given that
the means for ensuring data consistency are usually nonexistent or at
most very simple. This work intends to overcome this limitation by ex-
tending the support for defining and enforcing integrity constraints on
graph databases, in order to prevent the graph to reach an inconsistent
state and compromise the correctness of applications. The proposed in-
tegrity constraints are implemented on OrientDB. Experimental results
show that the prototype implementation can improve the performance
in comparison to verification of constraints on a client application.

Keywords: Graph databases - data consistency - integrity constraints
- data integrity - OrientDB.

1 Introduction

A well-known fact regarding the present state of information technology is that
the amount of data produced and stored by computer systems is in constant
growth. This phenomenon, known as Big Data, is nowadays the subject of a
substantial amount of research work. Not only data is produced in larger volumes,
but it is generated by multiples sources in different formats (variety), and must
be stored and processed quickly (velocity) without compromising its validity.
Along with the volume of data, the need for better performance and for more
efficient management became very relevant issues [13]. However, the traditional
databases (DBs) are not always able to handle all the requirements of such
large volumes [17]. As a result, the category of Database Management Systems
(DBMSs) known as Not only SQL (NoSQL) has emerged aiming to fulfill these
requirements. The main characteristic of NoSQL DBMSs is that data consistency
is relaxed with the aim of improving performance. It allows data to be incon-
sistent for some time, which may be prohibitive for some applications. Among
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the existing categories of NoSQL systems, graph DBMSs have been increasing
in popularity, and are the subject of this work.

In general, when graph DBMSs offer support for specifying and enforcing
Integrity Constraints (ICs), the supported ICs are usually very limited. The
most common constraints allow database administrators to enforce attributes to
have unique values, limit minimum and maximum values, and define attribute
types. Due to the lack of support for more complex ICs, data validation often
becomes the responsibility of the application that uses the graph DB, resulting
in an increase of development effort.

The work presented in this paper aims to tackle the lack of support for
complex ICs in graph DBMSs. Thus, it is possible to create rules using two or
more elements (attribute, node or edge) at the same time. Therefore, we propose
a specification syntax for ICs as well as a mechanism for their enforcement during
operations that modify the graph. To achieve this goal we define six new ICs
and implement them on the OrientDB, allowing the definition of: (1) conditions
on node attributes, (2) required edges, (3) type of in/out nodes of an edge, (4)
edge cardinality, (5) bidirectionality of edges, and (6) conditions on attributes
of nodes linked by an edge. We evaluate the impact of these constraints over
the performance of OrientDB. With these extensions, we intend to transfer the
responsibility for validating data constraints from the client application to the
DBMS, enforcing data integrity with less effort when developing applications.

The remainder of this paper is organized as follows. Section 2 presents the
most relevant concepts used in this work. Section 3 explains our proposal, spec-
ifying in more detail the ICs that are supported by our extended version of
OrientDB. Then, Section 4 describes the evaluation study performed over our
implementation. Next, Section 5 identifies some similar proposals described in
the literature and compares them to the solution proposed in this paper. Finally,
Section 6 presents the conclusions reached with the development of this work
and singles out some open issues that require further research.

2 Fundamental Concepts

A Graph DB is essentially a DB that uses the explicit structure of a graph to
store, query and manipulate data. Vertices, also called nodes, represent database
records, while edges represent relationships between data [3]. In general, every
edge has a label that identifies the relationship it represents. Vertices and edges
may also have properties. Therefore, edges are as important as vertices, due
to the potentially relevant information they carry. Due to its composition of
vertices, edges and properties, this structure is said to be a property graph [19].
This work considers property graphs as defined in Definition 1. This definition
was adapted from [2] to remove multiple labels and multiple attribute values,
aiming to better align with current graph DBMSs implementations, including
NeodJ, OrientDB, InfinityGraph, Trinity, Titan and ArangoDB.

Definition 1. A property graph is a tuple G = (N, E, p,\n, Ag,0), such that:

1. N is a set of nodes;
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. E is a set of edges;

. p: E— (N xN) is a function that associates an edge in E with a pair (o,t)
of origin and target nodes in N ;

An N — Ly is a function that associates a node with a node label;

Ag : E — Lg is a function that associates a edge with a edge label;

6. 0 : (NUE) x P — K is a function that given a node or edge together with
a property P, associates the pair to a value from K.

Co

Al

The representation of highly connected data in a relational model is possi-
ble, however it results in several many-to-many relationships. A query under this
conditions may require a big number of joins, which can degrade the performance
[18]. In contrast, the graph structure allows a better management of this type
of data, resulting in faster query processing [5]. The most recurring example of
application that benefit from using graph DBMSs are social networks. Never-
theless, graph DBs are very useful in financial systems, for fraud detection and
transaction monitoring [6,18]; on document analysis to analyze speech data and
identify stakeholders’ intention [15]; on the retail sector, helping with decision
making and product recommendation [1]; among several other applications.

Differently from relational DBs, which have a well-defined schema, graph DBs
do not have a rigid structure. It means that while in a relational DB an insert
operation can only set properties defined in the DB schema, in a graph DB it
can add new properties that were not defined on the schema. This characteristic
results in faster execution of operations. However, it becomes harder to impose
1Cs, given that there is no schema to follow. As a result, graph DBs in general
either do not provide tools to ensure consistency, or only support very basic ICs.

Graph DBs are categorized under a larger category of DBMSs, named NoSQL
DBs. Unlike the acronym suggests, this category does not preclude the use of
SQL, but indicates the use of alternatives to the relational model, which backs
SQL. They also follow Basically Available, Soft state, and Eventual consistency
(BASE) properties, which imply that the DB has to be available most of the time
for read and write operations. It also indicates that data may be inconsistent
during some time, but will become accurate in a future moment [16].

In DBs with BASE properties, consistency refers to transactions performing
reads on up-to-date and committed data. Correctness of data is not a concern
of consistency, but rather a concern of data integrity. Thus, data integrity can
be defined as the maintenance and assurance of the data correctness during all
its life cycle [14]. It is a major concern of many systems, especially those that
mange real world data, and can be achieved by the use of a set of rules that
specify all the allowed update over the data. In this scenario comes the concept
of ICs, which can be described as a set of general rules that define a consistent
state of the DB, as well as allowed modifications [3]. These rules must be applied
on every inserted data to avoid inconsistency. If the integrity cannot be secured
by the DBMS, its assurance must be implemented at the application level.

In relational DBMSs, the constraints are linked to one of the following cate-
gories: entity integrity, referential integrity, and domain integrity [9]. The use of
ICs ensures that the information stored on the DB conforms to these rules and,
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as a result, enforces integrity. However, most of the graph DBMSs available on
the market nowadays do not support ICs, or only allow elementary rules to be
defined, that are unable to provide the level of integrity required by most of the
applications that store and manipulate graph data.

3 Extending Support for Integrity Constraints in Graphs

This work proposes an extension of a graph DBMS to allow the specification
of complex ICs, which are useful for applications that need to store data in the
form of a graph database with a high level of integrity. The graph DBMS chosen
to receive this extension was OrientDB!. One of the features that motivated
its choice is the fact that OrientDB already provides support for the definition
of simple constraints. Besides that, it is ranked among the most popular graph
DBMSs, according to DBEngines?.

In OrientDB, every class, also known as node type, is associated to a set of
metadata. The proposed extension aims to store the constraint definitions into
these metadata. Each IC is defined by the OrientDB client application using
our extension of the OrientDB Data Definition Language (DDL). After an IC
is stored on the metadata, any modification to the set of instances of that class
will be validated against the IC before the corresponding transaction commits.

All ICs already supported by OrientDB are restricted to comparing values
between the data being inserted or updated against threshold values defined in
OrientDB metadata for a given node type. One approach to implement more
complex ICs not limited to node attributes is to dynamically compute node
attributes and compile definitions of such complex ICs into simpler ICs that
are limited to checking node attribute values. However, this strategy incurs a
large overhead in the form of such dynamic attributes and the potentially large
amount of metadata required to implement the ICs. To avoid such drawbacks,
the extension adds a new first-class component, the constraint manager, to the
internal architecture of OrientDB. This component provides its own constraint
validation mechanisms that are used by the new IC types, without relying on
the constraints already supported by OrientDB. The use of a dedicated con-
straint manager allows for ICs that also involve edges, in addition to nodes and
properties. Its existence also eases the introduction of new constraint types by
providing a single interception point for their validation. The extension proposed
in this work introduces support for six new IC types: node condition, required
edge, in/out, edge cardinality, bidirectional edge and edge condition.

The constraint manager is initialized together with the OrientDB server and
uses an SB-Tree [8] to store and manage Constraint objects. When the user
defines an IC using the CREATE CONSTRAINT command, the parser extracts the
constraint type, its target and constraint-specific arguments. The result of the
parsing is fed into a constraint factory and the resulting Constraint object is

! https://orientdb.com/
2 https://db-engines.com/en/ranking/graph4dbms
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serialized into the SB-Tree. In addition to adding the constraint manager, the
OrientDB DDL grammar was extended to support the new constraint types.

Once the constraint is declared and stored on the SB-Tree, every write oper-
ation on the graph DB triggers the validation of the relevant Constraint objects.
After locating all relevant Constraint objects, the constraint manager collects
all relevant data for the write operation and invokes the validation procedure
of each Constraint object. If any Constraint validation fails, an exception is
thrown, leading to the abortion of the whole transaction.

The syntax of each new IC supported is presented in the remainder of this
section, together with a formal definition. All definitions use the property graph
defined by [2] and presented in Definition 1.

Some constraints allow for relational operators, which are denoted by a €
O, where O = {<,<,=,#,>,>}. Node and edge types are denoted using the
notation 73, where § € L is a label that identifies the type unambiguously.
Formally, types are defined by the sets of their instances: 73 = {z | An(z) =
B N Ag(z) = B}. Given that, labels for node and edges are disjoint, 8 € Ly <=
Ts CNand e Lgp < TgCE.

Node Condition Constraint. The goal of this constraint is to compare
properties of a node and to validate values assigned to them according to a
previously defined condition. Therefore, this IC is applied to the node class. It is
formally specified by Definition 2 and the general syntax is shown in Figure 1.

Definition 2. Given a property graph G = (N, E, p,An, g,0), a Node Con-
dition constraint is a tuple Cond = (To,,p1 € P,a; € O,k € K,ps € P,ag €
O,ky € K,ps € P,asg € O, ks € K), such that:

o(0,p2) ag ko, if k1 € 0(0,p1)

YoeT, .
¢ o(o,ps) as ks, otherwise
1 <CREATE> <CONSTRAINT> name <ON> class <(> attribute <)> <CONDITIONAL>
2 <(> <IF> property (>|<|>=|<=|=|!=) expression
3 <THEN> property (>|<|>=|<=|=|!=) expression
4 [ <ELSE> property (>|<|>=|<=|=|!=) expression ] <)>

Fig. 1: General syntax of the Node Condition constraint.

Required Edge Constraint. This IC defines that a node class has a manda-
tory outgoing edge of a given type, that will point to an instance of a target node
class. Therefore, if there is a node whose class appears as origin class in the con-
straint, then there must be at least one edge leaving this node and arriving at
a node with the given target class. The constraint is associated with the ori-
gin node class metadata. This IC is formally described by Definition 3 and the
general syntax is shown in Figure 2.

Definition 3. Given a property graph G = (N, E, p, AN, Ag,0), a Required Edge
constraint is a tuple Req = (T,, Te, T¢) such that:Yo € T, : (Je,t : e€ Toe Nt E
Te A ple) = (o,1)).
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1 <CREATE> <CONSTRAINT> name <ON> origin_class
2 <REQUIRED_EDGE> [edge_type] <TO0> target_class

Fig. 2: General syntax of the required edge constraint.

In/out Constraint. This constraint type restricts the classes of nodes that
are connected by an edge class. At the same time, this constraint is also useful
to enforce the direction of the represented relationship. For example, a person
authors a document, and not the other way around. Unlike the previous con-
straints, this one is associated to the edge class metadata instead of the node
class. This IC can be formally specified as shown by Definition 4 and the general
syntax is shown in Figure 3.

Definition 4. Given a property graph G = (N, E, p, An, Ag,0), an In/Out con-
straint is a tuple 10 = (T,,Te, T¢) such that:VYe € To : o€ T, A t € Ty, where
ple) = (0,1).

1 <CREATE> <CONSTRAINT> name <ON> edge_type <IN_OUT_EDGE> (
2 <FROM> origin_class <T0> target_class | <FROM> origin_class
3 | <TO> target_class )

Fig.3: General syntax of the in/out constraint.

Cardinality Constraint. The goal of this IC is to restrict the number of
edges of a given class that connect an origin node to target nodes. The cardinality
specification consists of two integer numbers, with N serving as a placeholder for
“unspecified”, i.e., any number is allowed. Unlike in/out constraints, cardinality
constraints are associated with the origin node class and therefore do not al-
low an unspecified origin node class. Another important difference between both
constraints is the form of validation. Since OrientDB associates node identifica-
tion numbers with classes, in/out validation can be implemented performing no
reads on the DB. Figure 4 shows the general syntax of this constraint type. The
constraint is always associated with the origin node class and to the edge class.
After specification of the cardinality, one may optionally specify the destination
node class. This constraint is formally specified by Definition 5.

Definition 5. Given a property graph G = (N, E,p,A\n,Ag,0), a cardinality
constraint is a tuple Card = (To, Te, Teya € Ok, € K A ky € K) such that:
Voe T, : [[{(e,t) | (e,t) € (Te x Te) A ple) = (0, 0)}] a ko A [[{(e,0) | (€,0) €
(Te x To) A ple) = (t,0)}|| o k.

1 <CREATE> <CONSTRAINT> name <ON> origin_class <CARDINALITY>
2 [edge_type]l <(> <INT | N> <..> <INT | N> <)> [<TO> target_class ]

Fig. 4: General syntax of the cardinality constraint.
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Bidirectional Edge Constraint. The purpose of this IC is to ensure bidi-
rectionality of the direction of a relationship. That is, given two nodes, if there
is an edge from A to B, there must be another edge of the same type linking
B to A. The constraint is associated with the edge metadata and its validation
verifies if the specified nodes are linked by an incoming and an outgoing edge of
the required type. This constraint is formally described by Definition 6 and its
general syntax is shown in Figure 5.

Definition 6. Given a property graph G = (N, E, p, AN, Ag,0), a Bidirectional
Edge constraint is a tuple BiDir = (T,,Te, Tt) such that the following two con-
ditions hold:

VeeT.: 3FJe: ple)=(o,t) = pe)=(t,o) NteT, N oeT,
VeeT.: Je: ple)=(to0) = ple)=(0,t) No€To, NteT

1 <CREATE> <CONSTRAINT> name <ON> edge_type <BIDIRECTIONAL_EDGE>
2 <BETWEEN> origin_class <AND> target_class

Fig.5: General syntax of the bidirectional edge constraint.

Edge Condition Constraint. The goal of this IC is to enforce a condition
over attibutes in both ends of an edge. In other words, it compares property
values of the two nodes connected by one edge. It is associated with the edge
metadata and also enforces the direction of the relationship. It can be formally
defined as shown in Definition 7 and its syntax is presented in Figure 6.

Definition 7. Given a property graph G = (N, E, p,\n,Ag,0), an edge con-
dition constraint is a tuple ECond = (Te,po € P,pr € P, € O), such that:
VeeT. : pe=(o,t) = 0o(0,p,) @ o(t,pt)

1 <CREATE> <CONSTRAINT> name <ON> edge_type <EDGE_CONDITION>
2 origin_class<.>property (>|<|>=|<=|=|!=) target_class<.>property

Fig. 6: General syntax of the edge condition constraint.

Since all constraints are built on top of the formalization in Definition 1,
which is aligned with several other graph DBMSs, the constraints are applicable
to those DBMSs as well. In general, applying the method to other DBMS in-
volves modifying the host DBMS for three tasks: parsing the constraints, storing
them and validating them. Parsing involves extending the DDL or creating one
with the IC syntax presented in this work, so the DB recognizes the CREATE
CONSTRAINT commands. The presented implementation of the constraint man-
ager uses an SB-Tree to store and manage constraint objects because this is a
general use index algorithm already provided by OrientDB. In other DBMSs,
this structure could be replaced by similar indexing algorithms, such as B-Trees.
In addition, a trigger to the validation routines must be implemented after pro-
cedures that recognize the create, delete and update commands of the DBMS.

© 2020 Springer. The final authenticated version is available online at https://doi.org/10.1007/
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4 Evaluation

The support for ICs proposed in this paper was implemented on OrientDB 3.1.0.
To evaluate the impact of the modifications, the most relevant and quantifiable
factor is the execution time of operations in the DBMS. Therefore, this evaluation
focuses on the impact of IC validation on query execution time.

The strategy adopted assumes that ICs are originated from business mod-
eling and not only from implementation aspects. As a result, when a developer
selects a weakly consistent DBMS or one without support for enforcing ICs, con-
straint validation must be enforced by logic introduced in the application code.
That way, the experiments are built to allow the comparison of three variants
of the OrientDB. The first one is the Original OrientDB server, without any
modification. The Modified variant consists in a version of OrientDB modified
to incorporate the constraint manager and to accept the definition of the six
new ICs described in the previous section. Finally, the Application variant cor-
responds to performing IC validation within the client application and sending
the corresponding data manipulation commands to the original OrientDB server.

The source code for reproducing the experiments is available in a public
repository3. Countermeasures were adopted to avoid spurious interference on the
results provoked by the Java Virtual Machine (JVM). A new pair of JVMs is
created for every measurement: one JVM executes the OrientDB server while the
other executes the test client code (constraints-tests-client), which sends
the test transaction to the server and measures its execution time. Both JVMs are
created on the same host — an Intel i7-4510U dual-core at 2.0 GHz, with 16 GB
of RAM, running Ubuntu 18.04.3 LTS 64bit (kernel 5.0). A single measurement
consists of two phases, each executed on a new pair of client and server JVMs. In
the first phase, the client sets up the DB within OrientDB using administration
commands. This setup includes basic schema information, including ICs, and
population of the DB where applicable. On the second phase, that is executed
on a new pair of client/server JVMs, 100 analogous transactions are executed 3
times. The number of transactions aims to avoid unreliable measurement of fast
operations and the 3 executions aim to avoid interference from non-deterministic
background tasks, such as the GC (Garbage Collector), disk caching and JIT
(Just In Time) compilation. Between each of these 3 executions, disk caches are
flushed (using the sync () system call) and the GC is requested to run. Only the
third execution had its time recorded and was considered for analysis.

The first scenario evaluates the Node Condition constraint. In this experi-
ment, each transactions tries to modify the values of properties of one instance
of class Person, violating the constraint. The constraint imposed in this first
experiment is shown in Figure 7.

The next three scenarios evaluate the Required Edge, In/out and Cardinality
constraints. Figure 8(a) presents the constraints created in these three scenarios.
The DB was populated with 100 replicas of the structure shown in Figure 8(b);
then, 100 transactions are executed sequentially, resulting in the structure shown

3 https://bitbucket.org/fmreina/orient-driver /src/master/
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1 CREATE CONSTRAINT cond ON Person (attril) CONDITIONAL
2 (IF attr2 < 3 THEN attrl < 2 ELSE attrl > 4);

Fig. 7: Node Condition constraint created in the first experiment.

1 CREATE CONSTRAINT req ON Person
2 REQUIRED_EDGE owns TO Company; owns
3 Required Edge In/Out Cardinality
4 CREATE CONSTRAINT inout ON owns
5 IN_OUT_EDGE FROM Person TO Company; (b) DB population template
6
-Company -p

- CREATE CONSTRAINT card ON Person Pl Towns | lowns
g  CARDINALITY owns N .. 3 TO Company; owns|

(a) Constraints created during experiments Required Edge In/Out Cardinality

(c) Transaction templates

Fig. 8: Constraints (a), models for DB population (b) and transactions (c).

in Figure 8(c). The Required Edge 1C is created to enforce the existence of at
least one edge of type owns between nodes Person and Company. In the In/Out
case, the IC is created on the edge class owns to specify that edges of this type
are only valid if they have a node Person as source and a node Company as
target. Finally, the Cardinality IC is created on the node class Person to limit
the number of nodes of type Company the same person can own.

The transaction that tests the Required FEdge scenario, due to the nature of
this IC, performs an edge removal rather than an insertion. In the Original and
Modified variants, a single command is sent to OrientDB per transaction. In
the Application variant, this is not possible. Therefore, the application performs
a SELECT operation for each node to validate the existing edge cardinality,
and then sends a command that creates the edges between the nodes. The same
approach is adopted for the Application variant in all scenarios, as it is necessary
to validate the IC before actually performing the intended operation.

The last experiments evaluate the other two ICs proposed in this paper:
bidirectional edge and edge condition. Figure 9(a) illustrates the transactions for
each scenario where new edges are created meeting the constraint requirements.
As with the first batch, this operations can be executed with a single command
in the variants Modified and Original. However, in the variant Application, it is
necessary to perform more operations to query the involved nodes and run the
validation routine before the command to create the edges is sent to the DB.

The results obtained with the three variants (i.e., Original, Modified and
Application) are illustrated in Figure 10. In this figure, narrow boxes with white
background represent the central quartiles, totaling 50% of measurements and
are divided into the median. For the limits, from which outliers are found as
points, we used min(Mazximum, Median + 1.5IQR), where IQR is the Inter-
Quartile Range, to the height of the boxes. In addition to the classic elements
of a box diagram, the average, represented by triangles, and the 95% confidence

© 2020 Springer. The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-59003-1_18



https://doi.org/10.1007/978-3-030-59003-1_18
https://doi.org/10.1007/978-3-030-59003-1_18

10 F. Reina et al.

married_to
m m 1 CREATE CONSTRAINT bidirec ON married_to
married_to > BIDIRECTIONAL_EDGE BETWEEN Person AND Person;
Bidirectional Edge 3
parent_of 4 CREATE CONSTRAINT econd ON parent_of
5 EDGE_CONDITION (Person.age > Person.age);
Edge Condition (b)
(a)

Fig. 9: Models for DB population and transactions (a), and ICs created (b).
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Fig. 10: Impact of constraint checking on the average time required to execute a
batch of 100 write transactions.

interval (CT), represented by wide filled rectangles, have been added to the illus-
tration. The labels on the bars show the increase of the runtime as a proportion
of the variation Original.

The first box diagram in Figure 10 presents the results for the Node Condition
constraint. There is a performance cost for using the Modified OrientBD to
impose the constraint, but this cost is significantly lower than doing the required
validation at application level.

The second, third and fourth plots show the runtime of the Required Edge,
In/out and Cardinality scenarios using the three variants mentioned before. In
all scenarios it is also observed that IC validation using the modified OrientDB
is, on average, more efficient than validation at the application. Another im-
portant conclusion is that there is a large intersection between the performance
observed with the Original OrientDB and the time with the Modified variant.
This wide intersection prevents the differences in performance from being con-
sidered statistically significant.

The last two plots in Figure 10 present the execution time of transactions
in scenarios with the Bidirectional Edge and Edge Condition constraints. In
these two scenarios, the same behavior of the previous ICs is also observed. The
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validation in the modified version of OrientDB is equally more efficient than
the Application variant, since the CIs do not intersect. Comparing the other
two variants, Original and Modified, the latter presents a higher positive skew,
however the intersection between them is large as well.

Although the Application variant has, in all cases, shown worse results than
the Modified OrientDB, there are scenarios where this difference stands out. In
the Required Edge, Cardinality, Bidirectional Edge and Edge Condition scenar-
ios, additional database access is required for the application to retrieve the
information necessary to perform data validation. New tests with significantly
larger graphs and more complex constraints are planned as future work.

The experiments assume that the client application is capable of ensuring
adequate concurrency control in order to preserve IC consistency, which can be
difficult to achieve in practical scenarios. Two instances of the application can
concurrently validate an IC and then concurrently perform operations that to-
gether violate the IC. In such situations, where there are applications modifying
the graph concurrently, distributed concurrency control techniques should be
applied. As a result, there will be greater complexity of implementation, causing
additional impacts on applications beyond those shown in Figure 10.

5 Related Work

Some of the characteristics of graph DBs, such as being schema-less and follow-
ing the BASE properties, make them more flexible and allow them to provide
better performance. On the other hand, the same aspects are responsible for the
lack of consistency that may be fundamental for some categories of application.
However, it is important to remember that a strong schema definition may de-
teriorate the performance of the DBMS. Thus, the challenge is to find a solution
for the lack of consistency without impairing flexibility and performance. Most of
the proposals found in the literature that address ICs are developed for relational
DBs. Among the few that discuss the graph model, many of them only compare
the available implementations, while others suggest supporting new constraints.

Pokorny [10] presents a general overview of graph DBs, covering storage,
query, scalability, transaction processing, categories of graph DBs and their lim-
itations. Among the limitations, Pokorny [10] lists features that are not entirely
supported by current graph DBMS, such as data partitioning capacity, support
for declarative queries, vector operations, and model restrictions that could make
possible the definition of data schema. Within the topic of model constraints,
1Cs play a central role but are not well supported by graph DBMSs.

Barik et al. [4] employ graph DBs to analyze possible attack paths of net-
worked applications. Most of the discussion in this paper centers on the anal-
ysis of vulnerabilities and attacks employing graphs. In their analysis, the pre-
conditions necessary to perform an attack form a dependency graph. Therefore,
an attack is seen as a progression that satisfies the dependencies. The authors
argue that the use of ICs assists the process of generating an attack graph. Thus,
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they propose an extension of Neo4j* in order to create a constraint layer that al-
lows ICs of unique values, primary and foreign keys, value range, in/out (known
as edge model) and edge cardinality.

In a comparison between relational and graph databases, Pokorny [11] lists
characteristics of relational DBMSs that are not currently supported by graph
DBMSs. One of such features is the explicit schema definition, including the
specification of ICs. This absence makes verifying accuracy of graph DBs more
difficult. Pokorny [11] argues that graph DBs are based on a logical model that
has three components: i) a set of types and data structures; ii) a set of inference
operators; iii) a set of ICs. Actual graph DBMSs typically lack at least one of
these three components, with ICs usually being the missing component. Later,
n [12], the authors suggest the definition of ICs in the conceptual or the DB
level. For this, they considered property data types, property value ranges, class
disjunction (i.e., a node cannot belong to two classes simultaneously), mandatory
edges and unique values for a property composition. Support for these ICs is
added to Neo4j through the extension of its Cypher language.

Roy-Hubara et al. [13] discuss data modeling and a schema definition. The
authors present an approach based on the entity-relationship (ER) model of the
application domain and create a mapping from the ER model for a graph DB,
along with using a DDL. They argue that the approach could be applied to any
graph DB, but do not show nor refer to any implementation.

Lastly, Angles [2] attempts to find common theoretical grounds for the plethora
of graph models implemented by several graph DBMSs. The author adopts prop-
erty graphs as the starting point and provides a logical formalization, including
the notion of a schema. This basic notion of schema is extended with ICs and
the syntax and semantics of a unified query language are described. All ICs are
defined and discussed from a theoretical standpoint, without discussing their
support in existing graph DBMSs.

Table 1 shows which ICs are natively supported by Neo4j and which are
added to it by the extensions proposed in [4] and [12]. In the case of OrientDB,
the table only shows those natively supported by OrientDB and those added
by this work, since it has not received such extensions before. In the table,
empty circles represent 1Cs that are natively supported by the DBMS, while
filled circles denote the new ICs proposed by the work referenced on the table
header. Those that are natively supported but are also repeated with filled circles
were re-implemented or improved by the work referenced in the table header.

Some of the ICs that appear in Table 1 require further discussion. In an
relational DB, foreign keys are used to represent relationships between tuples
from distinct tables. In a graph DB, this can be considered an anti-pattern,
since instead of using a foreign key property, one should use edges to represent
relationships between nodes, which correspond to tuples in the relational model.
Using foreign keys with properties to maintain relationships will yield more com-
plex queries and lead to inefficient query processing, since graph DBMSs are not
designed to handle such kind of property joins. The primary key constraint, men-

* https://neodj.com/
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Table 1: Comparison between native ICs and proposed extensions.
Constraint Types ‘Neo4J‘Barik et al.‘Pokorny et al.‘OrientDB‘This work
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(1): OrientDB enforces a single label (class) per node.
(2): The primary key constraint is equivalent to a composition of the required
property and unique property.

tioned by some authors, can be replaced by the simultaneous definition of unique
and required ICs. If primary keys are used to maintain referential integrity, one
falls into the same anti-pattern of using foreign key constraints. Similarly, com-
posite primary keys can be obtained by combining composite unique constraints
with a required property constraint for each component property.

Class disjointness ICs disallow membership of a single node to two or more
classes. In the case of OrientDB, this IC is a design decision of the DBMS itself
and every node must belong to a single node class. Therefore, this IC does
not apply to OrientDB in its literal sense. In contrast, one may use a node
property to store the “category” or “class” of a node. If multiple classifications
are desired, one may model the classes as nodes and model membership as an
edge from the instance to the class. If a single extra classification is allowed, one
may use a single property and limit its value range using maximum/minimum
constraints or using RegEx ICs. A RegEx (short for Regular Expression) is a
string that compactly describes a whole set of allowed values. RegExes can be
used to describe also sets of allowed values, such as the expression adult |minor
which accepts only two possible values: “adult” and “minor”.

6 Conclusions

Due to the large volume of data produced continuously by computing systems,
that resulted in the phenomena called Big data, new solutions for managing
and storing data have been developed. The greatest motivation for such devel-
opment comes from the fact that traditional technologies for data storage and
management are unable to meet the performance and scalability requirements
demanded by most of the novel data-intensive applications that have emerged
recently. New data models have been adopted, allowing large volumes of data
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to be handled, resulting in a fast adoption of these technologies in the software
market. In this context, graph DBs gained popularity due to their ability to eas-
ily represent data used by several applications, for which the graph data model
suits perfectly. However, this category of DBMS still lacks effective mechanisms
to enforce the integrity of the stored data. Therefore, this work proposed ex-
tending a graph DBMS, adding support for 6 new ICs: node condition, required
edge, in/out, edge cardinality, bidirectional edge and edge condition. As future
work, we plan to extend the number of supported constraints, including ICs
that appear in the related work and in [7], and also to evaluate their efficiency
and relevance in comparison with the constraints that are implemented by other
works and in the current DBMSs.

An evaluation study compared the original OrientDB version, a modified
version with added support for the new ICs and a third case in which data
validation is done by the client application. Experiments demonstrated that the
modified OrientDB presented a small increase in the execution time of data
manipulation operations, having the original version as baseline. This increase,
though, is not big enough to be considered statistically significant for five of
the new ICs. Only in one case — the node condition constraint — there is a
noticeable, but still small, performance loss. However, the modified version of
OrientDB is significantly faster than performing validations at the application
level. In addition, the resulting implementation also simplifies the development
of client applications, which can skip data validation checks and leave them to
be done by the DBMS.

The same strategy could also be adopted to add support for new ICs to other
graph DBs. Furthermore, despite adding support for only six ICs, the proposed
solution allows the easy addition of other constraints, with the aim of further
extending the mechanisms that can guarantee the integrity of graph DBs.
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