
A Domain-specific Language for Automated Fault
Injection in SystemC Models

Douglas Lohmann, Alexis Huf, Djones Lettnin, Frank Siqueira and José Luı́s Güntzel
Federal University of Santa Catarina - Florianópolis, Brazil

{lohmann.d,alexis.huf}@posgrad.ufsc.br. and {djones.lettnin,frank.siqueira,j.guntzel}@ufsc.br

Abstract—With the evolution of technology, electronic systems
have become significantly more complex. As a consequence,
design and verification of these systems evolved notably. Fault
injection is a dependability evaluation technique that is strongly
recommend during the verification step. Although there are
a number of tools capable of injecting faults, many of them
do not have a simple fault model description language and
require considerable manual effort. In this paper, we propose a
SystemC template metaprogrammed Domain-Specific Language
(DSL) integrated with Universal Verification Methodology (UVM)
to describe formal fault models that requires neither specific com-
pilers nor code preprocessing tools. Unlike current approaches
for fault injection, there is no need to create fault injection
environment manually or to describe the system in an XML
format. We evaluate our approach in terms of readability and
effort required from a designer to describe a fault injection test.
Our case study illustrates how the DSL helps designers to create
fault models in SystemC, decreasing programming effort and
taking advantage of SystemC/C++ expressiveness.

Keywords—Fault injection, SystemC, Universal Verification Me-
thodology.

I. INTRODUCTION

Over the last decades, electronic systems have become more
and more complex, due to the advances in chip fabrication
technology and the social needs for technologies development.
Given that embedded systems play an important role in our
daily life, it is fundamental that those systems are reliable oth-
erwise some system failures can eventually threaten lives. The
need for reliability and the growing complexity of embedded
systems introduce new challenges, mainly in the verification
process, to ensure the correct behavior of the design.

In order to make system verification easier, engineers in-
troduced more layers of abstraction in the design flow, fa-
cilitating description and testing at the system level. As a
possible solution, electronic systems are described in a high-
level language, such as C++ or Java, and then the system is
translated to a hardware description language, such as VHDL
or Verilog. The drawbacks of this approach are the manual
effort for translation and the risk of introducing new errors
during this step. SystemC language was created to overcome
those issues by enabling all levels of design modeling, for both
hardware and software, by using the same language.

In addition, methodologies to create reusable Testbenches
and techniques to improve the system’s dependability can be
coupled to optimize the verification process. The most used

Testbench methodology is the Universal Verification Metho-
dology (UVM), which sets rules and guidelines for enhanc-
ing Testbench development and simulation execution through
code reusability, modular Testbenches, stimulus generation and
transaction-level communication between the test ambient and
the Design Under Test (DUT), among other qualities [1].
One method for improving dependability evaluation is the
deliberate injection of faults into a system, followed by an
evaluation of how well the system was able to deal with
the faulty behavior of some components. The fault injection
technique can also be integrated with the UVM Testbench, as
both are used for system verification and validation.

Faults are described in a fault model, containing the fault
type, fault trigger, and the fault location. One issue on the
existing fault tools for SystemC is how to describe the fault
model. Many fault injection tools are based on the Extensible
Markup Language (XML) or use a runtime console. Despite
the number of fault injection methods using it, the XML
description of fault models is verbose, making it difficult to
setup system verification under fault injection. To overcome
this, in this paper we propose a Domain-Specific Language
(DSL) for fault model description. To that end, we create
a test environment based on UVM extensions to allow fault
injection at SystemC designs, as done in [2], but with the
DSL improvements. The DSL was implemented with C++
template metaprogramming and connected to the UVM fault
test environment.

Approaches that employ manually interactions are chal-
lenging to perform batch tests and replicate experiments.
Approaches that employ XML have a high entry barrier caused
by its verbosity and the distance of XML from the well-
established SystemC design workflow. Each tool also requires
a specific structure for the description of fault models, that
must be learned by the programmer. Finally, API-based ap-
proaches avoid the limitations of XML but still yield complex
setup code that is difficult to maintain.

The remainder of the paper is organized as follows: Sec-
tion II presents our SystemC DSL for fault models description.
Section III shows the experimental results. Section IV analyzes
related works, and Section V presents the conclusions and
limitations of our approach.

II. DSL FOR FAULT MODEL DESCRIPTION

The fault injection environment builds upon the UVM,
adding an Event-Condition-Action (ECA) engine and a tem-
plate metaprogrammed DSL for fault model description. The

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/icecs.2018.8617838

https://doi.org/10.1109/icecs.2018.8617838


ECA engine receives fault models from the test engineer and
operationalizes fault injection. A fault model consists of a fault
trigger (i.e., a condition that when it becomes true, triggers
fault injection), a fault location (i.e., wherein the DUT the
fault will be injected) and a fault type (i.e, what will be
interference). The ECA engine splits the fault trigger into a set
of event sources and a boolean condition yielding, respectively,
the event and condition elements of ECA. The fault location
and fault type are given by a single fault injection component,
that the ECA engine stores as the action element.

Given that the UVM, the ECA engine and supporting event
monitors are independent of the DUT, the specification of the
fault model remains the most complex task for the test engi-
neer. The main goal of the DSL is to build expressions mixing
C++ values or variables with SystemC variables or objects
(e.g., signals). The DSL is implemented using templates and
retains the syntax of C++ expressions. As for semantics, the
code generated by the C++ compiler for a DSL expression
only creates a data structure for subsequent introspection and
evaluation. The atomic elements of the DSL, whose presence
makes the C++ compiler treat the whole expression as a DSL
expression, are var and evt. A var object stores the name of
a DUT object registered in the UVM configuration database.
An evt object is similar to a var object, but refers to the
default event of SystemC ports and signals). To the built-in
C++ operators var behaves like the referred object and evt
behaves as a boolean (true after the event occurs).

In addition to var, evt and the built-in C++ operators, the
DSL includes other helper constructs. The cap(x) function
allows the DSL expressions to bind to a C++ variable x
by reference, instead of copying its value. The unif(a,
b) function represents a random value uniformly distributed
between a and b. The call(f, a1, ...) function rep-
resents the return of function f if called with arguments
a1, ..., which may themselves be a DSL expression. This
provides a escape hatch for any situation where complex or
stateful calculations are required as part of the DSL (e.g.,
coordinate transformations or Finite Impulse filters).

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section evaluates the approach presented in Section II
with respect to expressiveness and ease of use. In addition,
we show a fault injection case study, in which we successfully
applied our technique to build a fault-tolerant matrix multipli-
cation design.

A. Comparing the DSL to existing approaches
The evaluation employs three scenarios of fault injection in

order of increasing complexity. Three fault model description
techniques are applied to each of these scenarios. The first
technique is the XML-based one proposed in [3]. This was the
only approach for which we could obtain some code describing
fault injection. However, the chosen scenarios are limited by
the absence of the full language specification and the actual
tool. The second technique is the one described in our previous
work [2] with an additional ECA implementation but lacks the
DSL. The third technique is the DSL proposed in this paper.

Scenario A consists of data modification. Listing 1, adapted
from [3], specifies one such scenario. In this example, one
byte, starting at position 200, is modified. As the modification
is a or mask, the effect is an assignment of that one byte.

Listing 1. SCENARIO A: XML FAULT MODEL ADAPTED FROM [3]
<data>
<transfer start pos="200" length="1">

<or mask="0xff"/>
</transfer>

</data>

Listing 2 shows the same fault model description using the
proposed fault injection technique using the ECA, without the
DSL. As discussed in Section II, our fault injection technique
is based on [2], where the authors use the uvm config db to
access DUT components. Therefore, before the fault condition
is defined, the objects used in the description must be in
the UVM database. Any accessible DUT component from the
Testbench can be stored in the UVM config database, such as
signals, ports, and other SystemC types.

Listing 2. SCENARIO A: FAULT MODEL WITHOUT DSL
bool truth = true;
engine->register_fault_condition(new uvm_var_ct_tpl<bool>(1),

new uvm_fault_set(new uvm_var_tpl<bool>("tgt", "*"),
&truth, 0, 1));

The size of the code in Listing 2 hinders its readability.
The proposed DSL generates the same effects but with a
more compact and intuitive syntax. Listing 3 shows the fault
model description from scenario A expressed in the DSL.
As the condition true alone is not a DSL expression, it
requires wrapping. The fault type is to set a char value on a
variable tgt of type char. In general, any DSL expression,
in addition to C++ values can be used as argument of set().
For example, var<char>("x") & var<char>("y").

Listing 3. SCENARIO A: FAULT MODEL WITH THE PROPOSED DSL

*engine << fm(cnst(true), var<char>("tgt").set(’\xff’));

The register fault condition ECA engine method is used
to register a fault model at the Testbench. To make the DSL
more compact, the << operator is overloaded to be used in
place of the aforementioned method. As is the case when this
operator is used with C++ output streams, fault models can be
repeatedly streamed into the ECA engine. A helper function,
fm (from “fault model”) is defined to group a fault trigger
(as the first argument) and a fault injector (as the second
argument), both described using the DSL.

Scenario B presents a more complex fault condition, intro-
ducing a probability. In this scenario, the variable is set in a
certain percentage of its triggers occurrences. To describe this
type of conditions we use the unif function, that creates a
uniform random distribution. Listing 4 uses random value in
such distribution to build an expression whose value is true
90% of the times the expression is evaluated.

Listing 4. SCENARIO B (PROBABILISTIC): DSL DESCRIPTION

*engine << fm(unif(1,10) <= 9, var<char>("tgt").set(’\xff’));

Faults with probability can also be created using the XML
approach presented in [3]. To do that, the XML attributes

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/icecs.2018.8617838

https://doi.org/10.1109/icecs.2018.8617838


random=1 and percentage=90, must be added to the
transfer tag at the second line of Listing 1.

Scenario C sets the value of a variable tgt to the average
of the last 3 values observed for the signal m_out1, Listing 5
shows the DSL fault mode description for this scenario. This
scenario relies on the call helper to compute the moving
average with a user-defined function mov_avg. The moving
average is updated always every time the m_out1 signal
changes. In the code, mov_avg is a template function that
computes the moving average from a history vector pointer
(&hist), a window size (3) and a sample value (m_out_1
current value). This scenario is not possible in [3]. Further-
more, the ability to call user-defined stateful functions as part
of fault injection is not present in any fault injection tool, to
the best of our knowledge.

Listing 5. SCENARIO C (MOVING AVERAGE): DSL DESCRIPTION

*engine << fm(evt<sc_signal<sc_int<32> >*>("m_out1"),
var<sc_int<32> >("tgt").set(call(&mov_avg<sc_int<32> >,

cnst(&hist), cnst(3), var<sc_int<32> >("m_out1"))));

There are no absolutely fair metrics to compare XML and
C++, as the languages do not share common elements such
as statements, declarations or expressions. Comparing line
numbers is also not fair as C++ lines are often longer than
XML ones. A reasonable metric is character count (ignoring
all optional spaces and line breaks), which is shown in Table I
for each scenario and technique combination. In all scenarios,
the DSL shows the smallest value. The main advantages of the
DSL, however, become clear in a qualitative comparison. First,
expressions (for fault trigger or fault type specification) are
more compact and readable in C++, especially for expressions
with more than a single operator. In XML, expressions must
be represented in the form of a tree. In contrast, the DSL
automates the generation of a similar tree implicitly. Second,
var and evt objects, as well as whole DSL expressions, can
be stored on local variables and reused across several fault
models. Third, call and the ability to mix C++ and DUT
objects in the fault model allows for greater flexibility, and
allow the test engineer to program highly specific fault models
which cannot be foreseen by fault injection tool designers.

B. Matrix multiplier with fault tolerance mechanism
In this section, we perform a fault injection test in a triple

matrix redundancy (TMR) multiplication example. For that, we
develop a DUT as shown in Figure 1. The DUT receives as
input two matrices, performs three independent multiplication
algorithms and chooses the most frequent matrix, as a strategy
for fault tolerance. The connections between the matrices and
the voter are made using sc signal standard communication.

Table II shows the fault model applied in our example. Each
fault registered is composed of a fault trigger, a fault type and

TABLE I. CHARACTER COUNT PER TECHNIQUE PER SCENARIO

Technique Scenario A Scenario B Scenario C

Characters [3] 78 104 -
[2] 141 183 381
DSL 55 60 159

Fig. 1. DUT with fault tolerant matrix multiplication architecture.

a fault location. In our example, a fixed value “fixed n” is set
at signals connecting the matrix multipliers (“m1”, “m2” and
“m3”) to the voter component, for each multiplier input event
with a uniform probability of 33%.

TABLE II. FAULT MODELS

Fault trigger Fault type Fault location
evt<out_m1>("m1_out",scp)

&& unif(0,100) <0.33 set_value(n) sg1[12]
evt<out_m2>("m2_out",scp)

&& unif(0,100) <0.33 set_value(n) sg2[12]
evt<out_m3>("m3_out",scp)

&& unif(0,100) <0.33 set_value(n) sg3[12]

The Listing 6 demonstrates a fault condition expression for
the first line of Table II fault model. The unif is a factory
function for a random variable, and is part of the DSL.

Listing 6. REGISTERING A FAULT CONDITION

sc_int<16> a = 323;

*engine << fm(evt<sc_out<sc_int<16> >*>("m1_out", "*")
&& 33 > unif(0,100),

var<sc_signal<sc_int<16> >*>("signal_m1", "*").set(cap(a)));

After registering the entire fault model of Table II, we run
the experiment for lengths of 50, 100, 500, and 1000 simula-
tions. Table III presents the results for those experiments. In
this table, a failure is determined by a DUT output matrix (after
the voter) that is different from the correct multiplication of
the input matrices. A success is a correct multiplication matrix
output, even when faults are injected. We note that the fault
injector applied the faults, and the tolerant matrix algorithm is
able to tolerate around 82% of introduced faults.

TABLE III. FAULT INJECTION RESULTS

Sim. length Injected faults Failures Success
50 41 8 42
100 85 16 84
500 484 94 406
1000 1001 187 813

This case study has shown that performing fault injection
using the DSL is intuitive and feasible. Many other fault
models can be described using this technique with the SystemC
modeling. Different kinds of triggers, fault types and locations
can be combined to create more efficient fault injection cam-
paigns.

IV. RELATED WORK

A fault injection technique based on replacing the original
data and signal types is presented in [4]. For that, the authors

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/icecs.2018.8617838

https://doi.org/10.1109/icecs.2018.8617838


overloaded the SystemC types constructors and destructors to
insert their fault types. Although this approach is less intrusive
than those presented in [5], it needs source code modifications
to change the constructors of data types and enable the
faults. The faults are set by a Fault Injector Manager through
commands. It is possible to choose fault types, locations, and
set probabilities of fault occurrences. All these properties of
the fault model are configured using methods of a class named
FaultInjectionPolicy.

Another fault injection technique based on data type exten-
sions is presented in [6]. Instead of overwriting the data types
constructor at DUT level as in [4], the authors modify the
SystemC kernel to change the native types of the language.
However, the focus of the article was not the description of
the fault model, but the fault injector introspection mechanism
and its optimization in terms of execution time.

In [7] and [8], a Reflective Simulation Platform (ReSP) is
presented. ReSP was implemented in Python and is based on
the reflective property of this programming language. In the
ReSP environment, faults can be described by the console,
which is useful during debug. To conduct fault injection
campaigns or perform many runs on the same architecture,
it is necessary to describe the fault models in an XML file,
in the same way as other fault injectors. Neither [7] nor
[8] presented the XML syntax for fault model description
or example descriptions. The XML description introduces
repeatability of fault injection testing, but as was the case in
[3], it is more verbose than a fault model description contained
in SystemC itself. Another example of work using XML for
fault model description is [9]. In their approach, the authors
generate SystemC faulty components from XML descriptions.

Our fault injector fully integrated with UVM is a user-
friendly formal fault model description tool that to allows
engineers to write fault models in a language that supports
hardware and software development, differently of [7] and [8].
Besides that, the faults are described using the C++ operators
to increase the expressiveness, while the XML-based works
have an unnatural description from the perspective of UVM.
Furthermore, such approaches are more verbose than the DSL
to express the same fault model, as showed in Section III while
comparing our work with [3].

V. CONCLUSION

In this paper, we presented a Domain-Specific Language
(DSL) in order to create compact and readable fault model
descriptions. We showed the architecture created to support
the fault injection environment and the fault model description
method. Our approach is based on extensions of the Universal
Verification Methodology (UVM) to create an hybrid environ-
ment for verification and injection of faults with a C++ DSL for
fault model description. Case studies conducted in this paper
demonstrate that the DSL is less verbose and more readable
than the other XML-based approaches. Notwithstanding, we
also evaluated the same fault injector framework with and
without the DSL, and demonstrated that the DSL is more
usable than directly creating C++ objects that describe a fault
model.

We validated our fault injection technique with a triple-
redundant matrix multiplier fault tolerant design, developed
in SystemC at a high level of abstraction. The performed
tests demonstrate the intuitiveness and effectiveness of our
approach. Template metaprogramming is widely known to
provide additional strain to the compiler. Another possible
limitation is that our apporoach ueses polymorphism relying
on heap memory (new operator). However, as the Testbench
typically runs on high-end PC systems instead of embedded
systems, these characteristics have negligible effect. Further-
more, our approach requires no changes to the DUT, and
therefore the same code that yields the synthesized final system
can be tested on the Testbench.

The DSL improves the fault injection tests, providing a
better way to describe the fault model. This approach con-
tributes to improving system dependability evaluation and
system verification. Future works consist in improvements at
the automation of the DUT variables insertion in the UVM
database, and the ability to verify at compile time if all
variables used in a DSL expression were inserted in the
database.

ACKNOWLEDGMENT

Alexis Huf receives a scholarship from FAPESC/CAPES
and Douglas Lohmann received a scholarship from CAPES.

REFERENCES

[1] S. Rosenberg and M. Kathleen, A Practical Guide to Adopting the
Universal Verification Methodology (UVM) Second Edition. Cadence
Design Systems, Inc., 2013.

[2] D. Lohmann, F. Maziero, E. J. Santos Jr, and D. Lettnin, “Extending
universal verification methodology with fault injection capabilities,” in
9th Latin American Symposium on Circuits & Systems (LASCAS). IEEE,
2018.

[3] M. Michael, D. Groβe, and R. Drechsler, “Analyzing dependability
measures at the electronic system level,” in Specification and Design
Languages (FDL), 2011 Forum on. IEEE, 2011, pp. 1–8.

[4] R. A. Shafik, P. Rosinger, and B. M. Al-Hashimi, “Systemc-based
minimum intrusive fault injection technique with improved fault repre-
sentation,” in On-Line Testing Symposium, 2008. IOLTS’08. 14th IEEE
International. IEEE, 2008, pp. 99–104.

[5] S. Misera, H. T. Vierhaus, and A. Sieber, “Fault injection techniques
and their accelerated simulation in systemc,” in Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro
Conference on. IEEE, 2007, pp. 587–595.

[6] W. Lu and M. Radetzki, “Concurrent and comparative fault simulation
in systemc and its application in robustness evaluation,” Microprocessors
and Microsystems, vol. 37, no. 2, pp. 115–128, 2013.

[7] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto, “Resp: A
non-intrusive transaction-level reflective mpsoc simulation platform for
design space exploration,” inProc. ASPDAC, pp. 673–678, 2008.

[8] C. Bolchini, A. Miele, and D. Sciuto, “Fault models and injection strate-
gies in systemc specifications,” in Digital System Design Architectures,
Methods and Tools, 2008. DSD’08. 11th EUROMICRO Conference on.
IEEE, 2008, pp. 88–95.

[9] W. Yan, D. Fontaine, J. A. Chandy, and L. Michel, “A design flow
with integrated verification of requirements and faults in safety-critical
systems,” in System of Systems Engineering Conference (SoSE), 2017
12th. IEEE, 2017, pp. 1–6.

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/icecs.2018.8617838

https://doi.org/10.1109/icecs.2018.8617838

