Publishing Linked Data Through
Semantic Microservices Composition

Ilvan Salvadori
Graduate Program in Computer Science (PPGCC)
Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)
Florianépolis/SC, Brazil 88040-900
ivan.salvadori@posgrad.ufsc.br

Ronaldo dos Santos Mello
Graduate Program in Computer Science (PPGCC)

P.P. in Methods and Management in Evaluation (PPGMGA)

Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)
Florianépolis/SC, Brazil 88040-900
r.mello@ufsc.br

ABSTRACT

Microservices are replacing monolithic applications by split-
ting them out into small and independent artifacts that col-
laborate with one another. Focused on managing highly
cohesive information, microservices may be composed to
provide richer and linked information. This paper presents
a composition method, aimed at composing semantic mi-
croservices for achieving data integration based on Linked
Data principles. Moreover, the proposed method leverages
the independence of development and composability of mi-
croservices. This paper also presents a framework and a case
study for the proposed method.

CCS Concepts

eInformation systems — Mediators and data inte-
gration; Service discovery and interfaces;

Keywords

Microservices; Linked Data; Composition

1. INTRODUCTION

The adoption of microservices is in continued expansion,
turning a traditional monolithic application into a highly co-
hesive and loosely coupled set of services. Microservices are
designed to provide solutions upon a well-defined domain,
resulting in multiple components that communicate and op-
erate together. The adoption of microservices facilitates the
deployment and maintenance processes. It also makes easier

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

iiWAS 16, Singapore
© 2016 ACM. ISBN 978-1-4503-4807-2/16/11...$15.00
DOI: http://dx.doi.org/10.1145/3011141.3011155

Alexis Huf
Graduate Program in Computer Science (PPGCC)
Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)
Floriandpolis/SC, Brazil 88040-900
alexis.huf@posgrad.ufsc.br

Frank Siqueira
Graduate Program in Computer Science (PPGCC)
Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)
Floriandpolis/SC, Brazil 88040-900
frank.siqueira@ufsc.br

to reach resiliency and scalability requirements. However, it
results in a more complex ecosystem, which requires addi-
tional communication and cooperation efforts.

Several service composition approaches can be found in
the literature. However, there are few proposals that pri-
marily address the microservices architecture. Furthermore,
there are few entity-based proposals, i.e., the majority of re-
search works addresses the composition problem assuming
action-based implementations. With regard to entity-based
implementations, identifying and connecting entities man-
aged by different data providers can be seen as a microser-
vice composition problem. Several proposals that directly
address the problem of connecting together different individ-
uals provided by heterogeneous data sources can be found
in the literature. Solutions based on SPARQL are described
by Araujo, Vries and Schwab [1], Casanova et al. [5] and
by Magalhaes et al. [16], whilst platform-independent pro-
posals are described by Hu and Jia [12] and by Stoermer,
Rassadko and Vaidya [22].

This work presents a composition method for semantic
microservices. In this method, microservices are modeled as
entity providers, in which a given microservice is responsible
for managing individuals aligned with a predefined concept
in a domain ontology. The proposed method makes use of
data linking techniques to find and connect individuals that
represent the same real world object, but are managed by
different microservices. This work also presents a develop-
ment framework, which aims to facilitate the adoption of
the proposed composition method.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the main concepts required for under-
standing this work. Section 3 presents the proposed compo-
sition method for semantic microservices. The Linkedator
framework is presented in Section 4. Section 5 describes re-
lated research efforts found in the literature. A case study is
presented in Section 6, and the evaluation study is presented
in Section 7. Finally, the conclusions and future work are
presented in Section 8.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

2. BACKGROUND
2.1 Semantic Web

The Semantic Web [3] is an extension of the current World
Wide Web, in which data available on the Web is semanti-
cally described. The Semantic Web allows not only humans,
but also machines to infer the meaning of data published on
the Web, and also facilitates data integration and reuse. It
is a natural evolution from a Web based on hypertext, tar-
geted at human beings, toward a Web of Data, which can be
interpreted by machines due to the association of published
content with their semantic descriptions. The combination
of Web content with semantic descriptions creates an inter-
connected information structure known as Linked Data [4].

Four principles govern the publishing of Linked Data [10].
First, Universal Resource Identifiers (URIs) must be used to
identify not only resources such as web pages, but also real
objects and abstract concepts. Second, these URIs should
be dereferenceable, i.e., allow retrieving information about
the referenced resource. Third, a single standardized data
model should be used: the Resource Description Framework
(RDF). Fourth, links should be defined among resources. In
RDF, such links are represented by subject-predicate-object
triples where the semantics of the link between resources
subject and object is specified by a predicate, in this case
known as an object property. These principles allow navi-
gation in the Web of Data, as well as interpretation of data
by machines.

Another type of RDF predicate are data properties, which
represent resource attributes as literal values. These prop-
erties do not specify links, but serve to describe resources.
Examples of data properties are the name or height of a per-
son. In relational or NoSQL databases, attributes are used
to identify table rows, documents or nodes. This use allows
relating records x and y by referring to the primary key of
y as an attribute of x. The equivalent pattern using data
properties does not allow navigation in the Web of Data us-
ing RDF, as there is no link explicitly represented. Both
object and data properties can be defined using Web On-
tology Language (OWL), which allows to perform reasoning
and logical decisions.

2.2 Microservices

According to Newman [19], microservices are small and
independent services. However, it is not defined in the lit-
erature how small and independent a microservice should
be. Microservices are focused on meeting quality of soft-
ware requirements present in a well-defined domain, which
may be divided into multiple bounded contexts. Develop-
ing microservices that implement a single bounded context
implies on keeping together things that change for the same
reason and separating things that change for different rea-
sons, therefore they can be implemented and deployed in-
dependently. Once microservices are relatively independent
from one another, each one can be developed using the more
suitable technology for its given purpose. By splitting up
a monolithic application into several microservices, deploy-
ment and maintenance are facilitated. It also makes easier
to reach resiliency and scalability requirements, since there
is no central point of failure and it is possible to scale only
the more demanded microservices. According to Newman
[19], each microservice should be developed and maintained
by a single team. This is an important characteristic that

makes microservices independent from one another and from
developers as well.

Microservices may be implemented by using Web tech-
nology such as Web Services and Web APIs or by using a
message broker that supports message queues and allows
communication through publisher/subscriber mechanisms.
Richards [21] classifies as functional microservices that im-
plement functional domain requirements, and as infrastruc-
tural the ones that implement non-functional requirements,
such as authentication, monitoring, logging, among others.

Microservices that are developed following the Web Ser-
vices approach can employ Semantic Web Service technol-
ogy, resulting in semantic microservices. According to Mcll-
raith, Son and Zeng [18] semantic Web Services should ex-
pose information about available services, their properties,
execution interfaces, pre- and post-conditions in a machine-
readable format. For Web APIs, managed resources, their
properties and relationships should be described. To achieve
this, Web API descriptions must be enriched by adding a se-
mantic layer, which facilitates the automation process of ser-
vice discovery, selection and invocation [13, 17, 18]. Battle
and Benson [2] advocate the adoption of standard semantic
technology, such as RDF and endpoint SPARQL, by seman-
tic Web Services.

2.3 Data Linking Principles

Data linking is the task of finding equivalent resources
that represent the same real world object [8]. Data linking
can be formalized as an operation that takes collections of
data as input and produces a set of binary relations between
their entities as output. The problem of data linking can
be categorized into two main groups: connection of data
from heterogeneous sources and comparison of data for data
cleaning, duplicate detection or merge/purge records.

A key requirement to properly produce link relations be-
tween entities is to determine the meaning of the matching.
Usually, the matching is intended to link together entities
that could be considered the same real world object, of-
ten expressed using the owl:sameAs property. However, the
notion of identity can be interpreted among three different
meanings: ontological identity, logical identity and formal
identity [8]. In the first notion, two different entities with
different object descriptions are identified as the same real
world object. In the logical identity, two different entities
represent the same object when they can be replaced each
other in a logical expression without changing the meaning
of the expression. Finally, the formal identity is used in
cases where each entity of the data source can be uniquely
identified by a standard property, such as ISBN for books,
DOI for academic papers, email for user accounts, etc.

The problem of data linking is similar to database record
linkage and also ontology schema matching, both widely ex-
plored in the literature [6, 7, 14]. Data linking makes use
of techniques from these areas, which can be divided into
three main categories: value matching, individual match-
ing and dataset matching. The value matching technique
applies to linking entities that contain the same property
value expressed in different ways. The individual match-
ing technique is used for deciding whether two entities cor-
respond to the same real world object by analyzing their
property values. Dataset matching takes into account all
entities from two different data sources in order to create an
optimal alignment between them.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

3. COMPOSITION METHOD

This work proposes a composition method for semantic
microservices based on data linking principles. In this sense,
microservices work only as entity providers. The proposed
composition method exploits the potential data intersection
observed in resource-oriented microservice descriptions to
create semantic links between resources and therefore pro-
vide a navigable view of the whole microservice architec-
ture. A plain microservice architecture requires that either
microservices generate links to other microservices, which is
a form of coupling, or that the microservices are separated
in such way that no client would need to follow links from
one microservice to another.

The proposed composition method aims to create links
that correspond to object properties on a domain ontology.
It uses individual matching techniques considering a formal
notion of identity as defined in [8]. It takes as input a set
of microservice descriptions, a domain ontology and a repre-
sentation of the resource that is meant to be enriched with
links. Resources are abstractions that represent informa-
tion handled by microservices. Resources are not directly
accessed; instead, they are seen through a representation,
which is a snapshot of the state of a resource at a given
time, available in different formats, such as XML, JSON,
HTML, etc. Although the general data linking output re-
sults in a collection of mappings between two entities from
two data sources, the proposed method is meant to append
such links directly to a given representation, working as a
representation link enrichment.

3.1 Microservice Architectural Constraints

The composition method assumes a Web-based microser-
vice architecture where each microservice handles a set of
resource classes. These resource-oriented microservices must
follow three architectural constraints for the composition
method to be applied.

The first constraint requires that each microservice pro-
vide ways to access their managed resources given some iden-
tifying information of the resource. Identifying information
is widely present in real world resources and it may be nec-
essary even in APIs that fully adopt REST architectural
style constraints [9] due to the need to interface with legacy
systems. Examples of person identifying attributes are U.S.
social security number, passport number, user login or ID,
e-mail address, etc.

With regard to the second constraint, microservices must
semantically describe managed resources. It is also required
describing the access details through identifying data. Fi-
nally, these descriptions must be accessible to other compo-
nents of the microservice architecture.

The third and final constraint is that the representations
provided by microservices must allow the inclusion of hy-
perlinks. However, the microservices themselves are not re-
quired to include links in their representations. As a result
of this constraint, consumers are able to distinguish between
links and literal information.

It is important to notice that the proposed method does
not require that microservices follow the REST principles.
However, the composition method only creates and appends
links to representations, and if a microservice violates any
REST constraint, these violations are not shadowed by the
proposed method, but are exposed to consumers. Further-
more, only microservices capable of dealing with semanti-

Domain ontology .., Object [T
s rdf:Class . ProPerty P < rdf:Class ™
. . c1 ‘___.". . - c2 .'.-....

Resources \mslemu: of

] HUS2 resource resl . res2

Identifying property

Representations P

Figure 1: Data linking-based composition method

Microservices us1

cally enriched resources and able to provide means to access
them are considered semantic.

3.2 Resource Design Constraints

The major resource design constraint is that the domain
must be described by an OWL ontology, and the resources
managed by microservices must be instances of classes de-
fined in this ontology. Furthermore, the data attributes of
the resources must correspond to data properties of the on-
tology. Likewise, links among representations correspond to
OWL object properties. These correspondences are not re-
quired for any purpose other than creating links, and are
therefore not enforced. Resources may contain data that
is not present in the ontology and some object properties
might never originate links.

An overview of the composition method is shown in Fig-
ure 1. In this example the ontology contains two classes (C1,
C2) and an object property P that has C'1 as its domain and
C?2 as its range. C'1 and C2 are managed, respectively, by
microservices uS1 and uS2. If a particular individual of C'1,
resl is related to an individual of C2, res2, through property
P, uS1 will not store a link to res2, but only its identifying
data. From the data that is actually managed by puS1, it
is possible to properly represent the relation between resl
and res2 through a link in representation repl referring to
representation rep2.

In order to avoid coupling between both microservices,
uS1 does not store links. Instead, representations are en-
riched with links by a separate component to satisfy con-
sumers. Thus, resl must associate internally the identifying
data of res2 with P to properly determine that resl is re-
lated to res2 through P. In fact, we model resl to contain,
in this case, a blank node as value of the property P, and
then place identifying data of res2 in that blank node. This
blank node in resl represents res2 without linking to res2.
The composition method identifies this, and automatically
adds a link in the blank node to res2 to identify that both
nodes are in fact the same node.

4. THE LINKEDATOR FRAMEWORK

This section presents Linkedator, a framework for compos-
ing semantic microservices in agreement with the composi-
tion method described in Section 3. Linkedator is divided
into 3 components: Core', API? and Jersey®. The first com-
ponent is responsible for creating links. The second one en-
capsulates the core functionalities into a Web API. Finally,

"https://github.com /ivansalvadori/linkedator
https://github.com/ivansalvadori/linkedator-api
®https://github.com/ivansalvadori/linkedator-jersey

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

the third component is a development tool for implementing
microservices by using the reference Java technological stack
for RESTful Web Services.

4.1 Linkedator-Core

Linkedator-Core is the main component of the framework,
responsible for creating links in JSON-LD [15] representa-
tions. JSON-LD is a representation format based on JSON,
which provides support for linked data. The core compo-
nent is composed by three modules: a service repository, an
ontology model and a link engine, as shown by Figure 2.
The service repository holds the semantic microservice de-
scriptions, which should describe all the necessary details to
interact with their resources. Hence, participating microser-
vices must have their descriptions registered in this module.

The ontology model holds the information about semantic
classes and properties of resources managed by participat-
ing microservices. The link engine module is responsible
for analyzing the ontology model, which comprises identi-
fying object properties and creating links between entities
provided by registered microservices.

There are two different methods for creating links: di-
rect and inverse. In the direct method, a resource that is
about to be linked has blank nodes containing shared infor-
mation with other resources managed by different microser-
vices. In the inverse method, this representation does not
contain such information. Nevertheless, the link engine is
capable of creating links to other representations based on
the object properties defined in the ontology model.

Algorithm 1 shows the necessary steps to create direct
links and to append them to a given representation. First,
the object properties of the informed representation are iden-
tified, resulting in an array used to select suitable classes
managed by registered microservices (lines 3-6). The se-
lected classes must match with the range of the identified
object properties. The next step (line 7) is responsible for
finding a suitable URI template that can be filled with data
on the representation to identify a resource compatible with
the property range. The selected URI template represents a
link with variables that could be used to access representa-
tions. In line 8, the variables of the selected URI template
are replaced with the informed representation data. Finally,
the resulting link is associated with the property owl:sameAs
and appended to the informed representation (line 9). The
property @type is also appended to the representation, which
defines the semantic class of the representation (line 10).

Algorithm 2 describes the necessary steps to create inverse
links and to append them to a representation. In this pro-
cess, object properties that have domain in the informed rep-
resentation class are selected, which means selecting all the
object properties that could be part of the informed repre-
sentation. As the informed representation does not contain

LinkEngine

Link Creator

Linkedator
pService
Repository
Ontology
Model

Figure 2: Architecture of Linkedator-Core

{ Direct Links J

Inverse Links
Creator

Creator

Algorithm 1 Direct Links Creation Algorithm

1: procedure CREATEDIRECTLINKS

2: rep = informed representation

3 obj Prop = OntologyModel.repObjProp(rep)
4 for each p € objProp do

5: classes = pServiceRepo.classes(p.range)
6: for each c € classes do
7,
8

t = findUriTemplate(c, rep.obj Prop)
link = resolveTemplate(c, t, rep)

9: rep.p.append(“owl:sameAs:”; link)
10: rep.append(“Qtype:”, e.URI)
11: end for

12: end for
13: end procedure

Algorithm 2 Inverse Links Creation Algorithm

1: procedure CREATEINVERSELINKS

2: rep = informed representation

3 obj Prop = OntologyModel.objPropByDomain(rep)
4 for each p € objProp do

5: classes = uServiceRepo.classes(p.range)

6 for each c € classes do

7 t = findUriTemplate(c, rep)

8 link = resolveTemplate(c, t, rep)

9: newElement.append (“owl:sameAs:”; link)
10: newElement.append(“@type:”, e.URI)
11: rep.append(p.uri, newElement)

12: end for
13: end for

14: end procedure

the intersection data, it is necessary to create new elements
to represent the referenced object. Within these new ele-
ments, which represent blank nodes, both the resolved link
associated with owl:sameAs and the property @type are ap-
pended.

4.2 Linkedator-API

The Linkedator-API is a component that encapsulates the
Linkedator-Core into a Web API meant to be accessible for
all the participant microservices. Linkedator-API exposes
mainly two functionalities: register a semantic microservice
description; and invoke the core component to create and
append links to a given representation. It is important to
notice that Linkedator-API works only as a mediator for the
Linkedator-Core, the functionalities are actually performed
by the core component.

Figure 3 shows a sequence diagram that represents the
processes of microservice registration and link creation.
Firstly, Linkedator-API loads the ontology file. Then, a mi-
croservice should perform a HTTP POST request for reg-
istering its description. When a given consumer interacts
with a registered microservice, the microservice sends the
requested representation to the Linkedator-API for creating
all possible links. The Linkedator-API appends the resulting
links to the representation and returns it to the microservice,
which forwards it to the consumer. The link creation process
is transparent to the consumer. Furthermore, new microser-
vices are able to join and register their description at run
time, resulting in more data sources and consequently more
possibilities for interlinking representations.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

|:Consumer| | :uService | | :Linkedator-API |

; Register |:|: i Load
(documentation) i (ontology)
Request D—’D

(representation) CreateLinks
(representation)

Linked
representation

Linked
representation
<

Figure 3: Microservice description registry and link creation
processes

The Linkedator-API supports custom configurations, such
as link verification and cache. When the link verification is
enabled, all links generated by the engine are verified. The
verification is performed by executing a HTTP HEAD re-
quest to the link, which must result in a HTTP OK response
(status code 200), otherwise the link is ignored. This veri-
fication is an assurance that the representation will be en-
riched with only valid links, at least at creation time. When
the cache is enabled, results of the link validation process are
stored in a cache, avoiding to validate a link repeatedly and
improving the performance of the composition as a result.

4.3 Linkedator-Jersey

This component is a tool for developing microservices us-
ing JAX-RS, the standard technology for developing REST-
ful Web Services on the Java platform. Its main goal is to
automatically create the microservice description by analyz-
ing the annotations used to create endpoints implemented
with Jersey — the JAX-RS reference implementation. Fig-
ure 4 shows an example of a microservice description. The
microservice described by this example is able to manage in-
stances of class “http://ontology#Person” defined in the do-
main ontology. In this example, the defined URI template
is used to obtain resource representations by informing a
taxID. A microservice description must semantically define
its URI templates, which implies the semantic description of
the template variables. In this example, the meaning of vari-
able tazID is defined by property “hitp://ontology#tazID”
described in the domain ontology.

{
"semanticResources": [{
"entity": "http://ontology#Person",
"uriTemplates": [{
"method": "GET", "uri": "person{?taxID}",
"parameters": { "taxID": "http://ontology#taxID" }
}
]
}
]
}

Figure 4: Example of a microservice description

Linkedator-Jersey also facilitates the interaction with the
Linkedator-API. By using this component, the microservice
description registry is performed automatically when the
service starts. The developer only has to configure the ad-
dress of the Linkedator-API in the configuration file. The
second role of the component is to automatically intercept all
consumer requests and transparently invoke the Linkedator-
API to create links in representations served to consumers.

5. RELATED WORK

The topic of data linking is directly related to many sim-
ilar problems, such as data integration, ontology match-
ing, discovery of class correspondence between heteroge-
neous data sources among others. A variety of research
works take into account these problems to output align-
ments between different concepts, properties and individuals
or even to output the alignment between the taxonomies of
two input ontologies. Ferrara, Nikolov and Scharffe [8] and
Otero-Cerdeira, Rodriguez-Martinez and Gémez-Rodriguez
[20] extensively survey work that adopt data linking ap-
proaches to evaluate both the lexical and structural simi-
larity of entities. However, only research works that directly
address the problem of connecting together different indi-
viduals provided by heterogeneous data sources have been
considered related work.

These works were divided in two categories: SPARQL-
based solutions [1, 5, 16] and independent-platform solutions
[11, 22]. This classification criteria is relevant because the
majority of microservice implementations do not consider
the use of semantic standards, especially regarding the use
of triple store as the data source.

The work of Araujo, Vries and Schwab [1], called Serimi,
proposes a two phase-method to address the instance match-
ing problem. In a first phase, traditional information re-
trieval strategies are applied to select candidate instances
to be linked. This phase aims at finding related instances
that have similar labels in two RDF datasets. The result-
ing instances in a source RDF dataset may contain multi-
ple distinct instances in a target RDF dataset. This prob-
lem is addressed by the second phase, which disambiguates
those instances by analyzing resource descriptions to iden-
tify property sets shared by instances. In the following step,
instances of the same class in the source dataset are linked to
instances of the same class of interest in the target dataset.
Despite the fact that Serimi directly addresses the problem
of interlinking individuals of different datasets, it can only
handle two data sources, which represents a limiting fac-
tor to deal with microservices composition. Furthermore, to
be able to interlink a instance from the source dataset, it
is mandatory to analyze all instances provided by the tar-
get dataset, which may be considered unfeasible in some
cases. Linkedator does not limit the number of datasets and
provides means for interlinking instances without analyzing
instance property values of all entities.

Casanova et al. [5] propose strategies to reduce the over-
head of interlinking isolated datasets through owl:sameAs
links, as well as strategies to improve the support to cor-
rectly maintain these links. The proposed strategies take
into account the definition of views, represented by a pair
v = (Vp,F) where F is a SPARQL query and Vg is the
vocabulary of F' consisting of a single class and its proper-
ties. The authors consider that the responsibility of creat-
ing materialized owl:sameAs linksets should be shared be-
tween data administrators and users. In addition, this work
presents a solution for maintaining owl:sameAs linksets by
reconstructing the links after an update operation. Sharing
the responsibilities of creating views for materialized links
with users requires technical knowledge and more mainte-
nance effort. In contrast, Linkedator only requires a se-
mantic description of the managed resource classes and
URI templates, which can be automatically registered when
Linkedator-Jersey is adopted.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

Magalhées et al. [16] present Query Evaluation Frame-
work - Linked Data (QEF-LD), a module capable of per-
forming SPARQL federated queries over distributed linked
data sources. This work proposes two architectures for data
linking: Linking Data Mashups and Linked Data Mashup
Services. The first one allows consumers to consult several
data sources through a single query interface simultaneously.
The second one combines Web Services, which manage dis-
tinct data sources, by executing a query plan defined in the
design step. Both architectures require a SPARQL interface
as well as a triple store as data storage solution. However, in
scenarios where microservices are able to manage data from
a triple store, or when microservices can deal with SPARQL
query regardless their storage solution, the Linking Data
Mashups architecture may be applied. Nevertheless, in the
second architecture, the limitation of defining a query plan
only in design time makes this architecture not suitable for
microservices, since they have dynamic behavior and these
services may suffer many changes during their lifecycle.

Hu and Jia [12] introduce an approach that combines two
methods for entity linkage: semantics-based and similarity-
based approaches. The semantics-based approach makes use
of equivalence reasoning leveraged by OWL semantics, e.g.,
owl:sameAs and other properties, while the similarity-based
approach considers shared properties between entities with
similar values as evidence that these entities represent the
same object. Given an entity (an instance of a class) as
input, the proposed approach infers a set of semantically
related entities by using functional properties. Then, as-
suming that related entities share some similar property-
value pairs, it expands the search to include entities that
match these pairs. This approach combines both semantics-
based and similarity-based approaches. On the other hand,
Linkedator takes into account only OWL object properties
to perform semantic analysis, since the considered microser-
vices do not handle links to external data sources, such as
owl:sameAs. On the other hand, this work requires the anal-
ysis of all entity values to decide the set of equivalent entities.

FBEM (Feature-Based Entity Matching), proposed by
Stoermer, Rassadko and Vaidya [22], is an approach for
entity resolution that combines probabilistic and ontologi-
cal methods for deciding whether two records describe the
same entity. The FBEM algorithm makes use of string sim-
ilarity between a selection of values of the entities. In order
to establish similarity between two entities, a ranked list
of candidate entities that match a reference entity is de-
fined. Despite being platform-independent, FBEM requires
the modeling of entities by using a FBEM specific ontology.
In contrast, Linkedator does not impose such a modeling,
it only requires a domain ontology. Furthermore, FBEM
decides whether two entities refer to the same object by ap-
plying string similarity techniques. However, such approach
may be unsuitable in cases when only few property values
are shared among entities provided by heterogeneous data
sources, like a single identifying property.

6. CASE STUDY

In order to show how the proposed composition method
can be applied using Linkedator, this section presents a case
study based on criminal, financial and immigration records.
Some technical details on the use of Linkedator are also pre-
sented in this section. This case study is also adopted for
the evaluation process described in Section 7.

;assportNumber beneficiary

remmiterOf inancial Trans.
~—

remmiter
immigrationRecord
traveler

author authorOf

Criminal Record Immigration Rec.

Figure 5: Simplified case study ontology

The domain ontology, summarized in Figure 5, con-
tains four classes: Person, Financial Transaction, Criminal
Record and Immigration Record. To save space, data proper-
ties of the classes are shown as light gray rectangles attached
to the classes, represented by ellipses; object properties are
represented by directed edges. Person acts as a central
class whose instances may have relations to the other three
classes, that themselves have properties in the reverse direc-
tion. To avoid coupling, object properties are not stored as
links to resources in other microservices, therefore such links
are created by the Linkedator framework.

The architecture of the case study is shown in Figure 6.
Instances of Person are fully handled by wServicel. In-
stances of the other three classes are handled by different
providers, each one represented by a different microservice.
From pService2 to wServiceb5 manage immigration data
from four continents. wSerwvice6 and wSerwvice7 manage
criminal records from two providers, FBI and Interpol. Fi-
nally, from pService8 to pServicell manage financial trans-
actions from the same four continents. All microservices
are implemented without knowledge from one another and
therefore, the representations produced by them do not in-
clude links to related resources on other microservices.

The fact that taxID and passportNumber are identifying
properties of Person is not stated on the ontology, but is
derived from the URI template descriptions given by the mi-
croservices. wServicel provides templates that given either
a tazxlID or a passportNumber produce an URI that, if valid,
identifies a Person instance. The pwServicel’s templates al-
low Linkedator to enrich the representation at Figure 7 (d)
with owl:sameAs links for the transaction’s remitter and
beneficiary, as shown in Figure 8.

In the case of Person representations, such as the ex-
ample in Figure 7 (a), no reference remains to related re-
sources. However, since pwService2 to uServicell provide
URI templates that use taxID and passportNumber as pa-
rameters, links for the object properties immigrationRecord,
remitterOf and authorOf can be constructed by Linkedator
from Figure 7 (a). The result of this enrichment is shown in
Figure 9. To save paper space, some links are omitted.

1,914 records 1,942 records 2,023 records 1,989 records
uService2 uService3 uService4 uService5
Europe South America| | North America Asia

uServicel
Person

1,000 records

| 747 records
Person > Qmmlgratlon record> HService6
Interpol
<Financial transacti0n> @riminal record
uService7
FBI

v

" - - - 740 d
uService8 uService9 uServicel0 uServicell records
Europe | [South America| |North America Asia
1,050 records 968 records 1,034 records 1,019 records

Figure 6: Microservice and data source details - case study

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

"Qcontext": { "ontology": "http://ontology#" },
"@type": "ontology:Person",

"ontology:taxID": "733-11716-531-23",
"ontology:passportNumber": "253-5022-82-43967-856",

"ontology:firstName": "Nicole",

}

(a)

{
"Qcontext": { "ontology": "http://ontology#" },
"@type": "ontology:ImmigrationRecord",
"ontology:reportFrom": "ontology:Europe",
"ontology:traveler": {

"ontology:passportNumber": "253-5022-82-43967-856"

"ontology:declaredMoney": "1787.82",

}

(b)

{
"Qcontext": { "ontology": "http://ontology#" },
"@type": "ontology:CriminalRecord",
"ontology:criminalAgency": "ontology:Interpol",
"ontology:author": {

"ontology:taxID": "733-11716-531-23"
"ontology:registerNumber": "062-11441-05780-76",
"ontology:crime": "Fraud"

}

()

{
"Qcontext": { "ontology": "http://ontology#" },
"Q@type": "ontology:FinancialTransaction",
"ontology:transactionFrom": "ontology:NorthAmerica",
"ontology:transactionID": "581-52207-12414-84",
"ontology:amount": "17528.46",
"ontology:remmiter": {

"ontology:taxID": "733-11716-531-23"
"ontology:beneficiary": {

"ontology:taxID": "720-72890-123-53"

}
}

d)
Figure 7: Examples of représentations used in the case
study: (a) A Person, from puServicel; (b) An I'mmigration
Record, from pService2; (¢) A Criminal Record, from
pService6; (d) A Financial Transaction, from pServicel0.
To save space, non-essential attributes were omitted.

In this case study, data was randomly generated from a
predefined schema using the Mockaroo tool*. A total of
1,000 Person records were generated, and related instances
of the other three classes were randomly generated and as-
sociated to persons using one of the two identifying data
properties of Person: taxID and passportNumber. After the
generation of a single dataset containing all persons, the data
was distributed among the microservices, each microservice
managing the instances which corresponded to their defini-
tion. For example, wService5 manages only data of arrivals
on Asia Immigration departments.

For each generated Person record there was a probability
of 25% that the person would have no immigration record.
For each person that was selected to have immigration re-
cords, a uniformly distributed random number between 1
and 20 of records were generated by randomly selecting the

“http://www.mockaroo.com/

"@context": { "ontology": "http://ontology#" },
"@type": "ontology:FinancialTransaction",
"ontology:transactionFrom": "ontology:NorthAmerica",
"ontology:transactionID": "581-52207-12414-84",
"ontology:amount": "17528.46",
"ontology:remmiter": {

"ontology:taxID": "733-11716-531-23",

"@type": "ontology:Person",

"owl:sameAs": "http://.../person?taxId=733-11716-531-23"
},
"ontology:beneficiary": {

"ontology:taxID": "720-72890-123-53",

"@type": "ontology:Person",

"owl:sameAs": "http://.../person?taxId=720-72890-123-53"
}

}

Figure 8: A financial transaction representation after
Linkedator enrichment

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:Person",
"ontology:taxID": "733-11716-531-23",
"ontology:passportNumber": "253-5022-82-43967-856",
"ontology:firstName": "Nicole",
"ontology:immigrationRecord": [{
"@type": "ontology:ImmigrationRecord",
"owl:sameAs": "http://.../immigration/253-5022-82-43967-856"
LR O PO G O O
1,
"ontology:author0f": [{
"@type": "ontology:CriminalRecord",
"owl:sameAs": "http://.../criminal/733-11716-531-23"
ALY LD
"ontology:remmiter0f": [{
"@type": "ontology:FinancialTransaction",
"owl:sameAs": "http://.../financial/733-11716-531-23"
ALY D
1
}

Figure 9: A person representation after Linkedator enrich-
ment

data attributes from lists and predetermined ranges. The
same approach was used to generate criminal records and
financial transactions. For criminal records, the probabil-
ity of a person having no record was 50% and the number
of records for a person was uniformly distributed between
1 and 5. The probability of a person having no financial
transaction was of 25%, while the number of transactions
per person was uniformly distributed between 1 and 10.

The result of this process was a single JSON document
comprising all persons with nested criminal, financial and
immigration records. The instances on this document were
distributed across the 11 microservices of Figure 6 accord-
ing to the criteria associated with each microservice, as pre-
viously discussed. After this process, wServicel outputs
Person representations such as those in Figure 7 (a) without
links to instances of the other classes related to the person.
On the other hand, the microservices that provide immigra-
tion, financial and criminal records will produce representa-
tions that contain blank nodes that include one of the per-
son’s identifying data properties. An example can be seen in
Figure 7 (b), where the property traveler instead of having a
link to a Person, has a blank node with a passportNumber.
The blank node represents an anonymous individual, which
Linkedator will later identify as being the same individual
as a person managed by wServicel.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

Table 1: Experiment scenarios’ results

Scenario | Linkedator-Core | Linkedator-Jersey | Client | Rep. size | Requests
Not linked - - | 287.5 ms 891.5 chars 11,000
With invalid links 0.2615 ms 17.02 ms | 290.1 ms | 1,618.5 chars 11,000
Only valid links 61.505 ms 79.61 ms | 304.1 ms | 1,501.0 chars 6,484
Only valid links (cached) 38.364 ms 56.834 ms | 276.4 ms | 1,501.0 chars 6,484

Not linked Linked - eventual invalid links

|
Frequency
500 1000 1500 2000 2500 3000

|
Frequency
500 1000 1500 2000 2500 3000

Frequency
500 1000 1500 2000 2500 3000

0
0
L

Linked - only valid links Linked - only valid links (cache)

Frequency
500 1000 1500 2000 2500 3000

il r—

0
L

T T T 1 T T T T T T 1
350 400 450 500 200 250 300 350 400 450 500
Client time in millis

T T T
200 250 300
Client time in millis

(a) (b)

r T T T T T 1 r T T T T T 1
200 250 300 350 400 450 500 200 250 300 350 400 450 500

Client time in millis Client time in millis

(c) (d)

Figure 10: Client response time distribution (a) Not linked; (b) Linked with occasional invalid links; (c) Linked with only
valid links; (d) Linked with only valid links - link validation results cached.

7. EVALUATION

In this section we describe our experimental methodol-
ogy and results. The objective of this evaluation is to find
out which factors influence the response time regarding the
adoption of the proposed composition method and of the
Linkedator framework. In order to allow the replication of
experimental results, source code and instructions for setting
up this evaluation are available in a public repository®.

The evaluation is performed through an evaluation ques-
tion, which aims at finding potential money launderers based
on the data managed by microservices that compose the case
study. It is important to say that data used in this evalu-
ation is hypothetical and is not related to a real personal
record information repository. In order to classify a given
person as a potential money launderer, its record must fulfill
three characteristics: total amount of financial transactions
must be equal or greater than a million dollars, total of
declared money on immigration records must be equal or
greater than a hundred thousand dollars, and must have a
previous criminal record of money laundering.

The components of the case study presented in the previ-
ous section have been deployed into the Amazon EC2 (Elas-
tic Compute Cloud) environment. Twelve machine instances
have been created, a dedicated instance for each microser-
vice, where eleven instances have been used for each mi-
croservice implemented in the case study and a dedicated
instance for Linkedator-API. The selected instance config-
uration was m3.medium, with Intel Xeon E5-2670 v2 (Ivy
Bridge) processors running at 2.6 GHz, 3.75 GiB of mem-
ory, running Ubuntu Server 14.04 LTS (HVM) and Oracle
Java Development Kit (JDK) 8. The microservices have
been configured to use -Xmax128m -Xms64m, where flag Xmx
specifies the maximum memory allocation pool for Java Vir-
tual Machine (JVM), while Xms specifies the initial memory
allocation pool.

In order to solve the evaluation question, a client applica-
tion has been developed to interact with microservices. Four

®https://drsalvadori.bitbucket.io/Linkedator /iiwas2016

different scenarios have been created. In the first scenario
there is no microservice composition, therefore the client
application must know implementation and deployment de-
tails such as URI templates and server addresses. This sce-
nario results in representations not linked, hence the client
application must directly perform HTTP requests to each
microservice. In the second scenario, microservices are reg-
istered in the Linkedator-API and their representations are
linked, but with occasional invalid links. In this scenario, the
client application only knows the URI to pServicel that re-
sults in a list of Person records enriched with links to other
representations. In the third scenario, the Linkedator-API is
configured to validate links, which ensures that representa-
tions contain only valid links. Finally, in the fourth scenario,
the Linkedator-API caches link validation results.

The client application was executed for all scenarios de-
scribed above and the results are shown in Table 1. This
table presents the mean response-time/request for creating
links spent in the Linkedator-Core and Linkedator-Jersey
as well as the total time perceived by the client. It also
presents the mean representation size/request and the num-
ber of requests the client application must execute in order
to go through all necessary records. One can notice that
the link creation process takes a significant amount of time,
especially when link validation is enabled. However, the link
creation process does not affect the overall client time. On
the other hand, the representation size increases 81.547%
for the second scenario, which encompasses occasional in-
valid links, and 68.37% for the third and fourth scenarios,
in which there are only valid links.

Figure 10 shows how the use of the proposed composi-
tion method is perceived by the client with respect to re-
sponse time distribution. Figure 10 (a) presents the time
distribution considering the first scenario (not linked rep-
resentations). Most requests in this scenario are executed
between 200 ms and 250 ms, followed by two spikes in 400
ms and 450 ms. Figure 10 (b) presents the time distribution
considering the second scenario (linked representations with
eventual invalid links). In this scenario, most requests are

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

o o o
o o o
< < N <
e °
0.0 Y o
o PYIRP ° 0. o APV A o .
S . N -0 D S] 0" =1 .
@ | o ° o .) h ™ ;
® Lo -0 ° °
2 2 8 L -9 ° :
= . = = LA
€ o € £
c 8 4 c 8 c 8
o N [Mean LinkedzatorTime o N [Mean LinkedatorTime o N [~ Mean LinkedatorTime
- = Mean LinkedatorJerseyTime - & lean LinkedatorJerseyTime o |- 8- Mean LinkedatorJerseyTime
£ © Mean ClientTime £ tean ClientTime 2 e £ o Mean ClientTime a
S = P = o
- . .
- 2 o
o o Y o FRRRRY
S 4 =} T =1 A
— — . — . \
87 et oo
L r .:‘
N - 8 -5 —0- g
- - - B [gle -0 -0— 4@ - » -
> —0- 4 -8 -0~ g- & <w- o -0 . P T
.-
I I S R R TR I I R o o
T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10
Number of links Number of links Number of links
(a) (b) (c)

Figure 11: Impact of number of links on response time: (a) Linked with occasional invalid links; (b) Linked with only valid
links; (¢) Linked with only valid links - link validation results cached.

(=]
a o ° o
° N e g
s i g — s
24 e : l s . ; 3 ;
o ' b °
e § [I— £ : : 2 : :
£ i i £ : : £ N i
£ o : : £ ; 5 £ g
s 81 s s s i -y i
15 £ 3 : ES i
S s S s BE
2 — 2 2 :
T : T _s]
T < H o o
Q 5 1 ' 17} Q
£ o : < £
c B = B c o |
3 : 39 : 3 ° g
- e : o I
S E !' :
S : - '
E— P \—1 R o 4 _ — El
T T T T © T T T T T T T T
Criminal Finance Immigration Person Criminal Finance Immigration Person Criminal Finance Immigration Person

Representation type

(a)

Representation type

(b)

Representation type

(c)

Figure 12: Impact of representation type on response time: (a) Linked with occasional invalid links; (b) Linked with only

valid links; (c) Linked with only valid links - link validation results cached.

executed within two ranges, the first one between 200 ms and
300 ms, the second one between 400 ms and 450 ms. Fig-
ure 10 (c) presents the distribution of requests executed in
the third scenario (representations contain only valid links).
One can notice that the link validation process distributes
requests more evenly between 200 ms and 300 ms, reducing
the spikes observed in previous scenarios. However, the use
of cache memory, presented in (d), concentrates the execu-
tion of most requests between 200 ms and 250 ms, similar
levels achieved in (b).

Figure 11 shows response times considering the number
of links evaluated by Linkedator. One can notice that the
response time of Linkedator-Jersey is similar to the response
time of Linkedator-Core, since all microservices are deployed
in the same data center. In (b) due to the need for executing
a validation request, the higher the number of links inserted
into a representation, the higher the response time. On the
other hand, in (c) where cache is enabled, the increase of
client response time is not perceived for most of representa-
tions. However, there is a spike when representations con-
tain 10 links. The reason for this is directly related to the
content of those representations, which fits person records.
In the case study, each person record is potentially linked to

other 10 representations: four immigration records, four fi-
nancial transactions and two criminal records. Each of those
links is unique, resulting in 10 cache misses given the client
behaviour. As a result, person records do not benefit from
caching, whereas their linked representations take advantage
of reusing links previously validated, as can be seen in Fig-
ure 12. Despite the fact that in some cases the cache is not
effective, validation of links inside the microservice architec-
ture tends to be faster than validation by clients, which are
often positioned at the internet edge, where round-trip time
to the microservices is significantly larger.

8. CONCLUSIONS AND FUTURE WORK

This paper proposed a method for composing semantic
microservices. In addition, this paper presented Linkedator,
a framework that aims to facilitate the adoption of the pro-
posed method. The proposed method combines semantic
standards and data linking techniques for composing mi-
croservices modeled as entity providers. Its main goal is to
enrich representations with links generated at request time
taking into account a domain ontology and a set of microser-
vice semantic descriptions. As a result, a given client appli-

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

cation capable of dealing with linked representations is able
to access more representations without knowing all interac-
tion details. Furthermore, new microservices may join and
automatically be accessible for existing clients.

By adopting the proposed composition method, splitting
up of monolithic applications are facilitated. In this sense,
a monolithic application may be split into several microser-
vices and their representations can be linked to one another,
reducing the impact of refactoring. However, it demands
that client applications be able to deal with linked repre-
sentations, otherwise refactoring a monolith application will
make these clients obsolete.

The evaluation showed that adopting the proposed me-
thod by using the Linkedator framework does not influ-
ence the overall client response time, considering the case
study scenario. However, factors such as link validation, the
number of potential links and the use of cache have signif-
icant influence on the link creation process. The link vali-
dation process has important influence on response time of
Linkedator-Core. However, in cases where microservices and
the Linkedator-API are deployed in the same infrastructure,
it reduces client time, due to link validation within the in-
frastructure being less expensive than providing occasional
invalid links, forcing clients to waste time.

In future work we intend to include similarity-based tech-
niques to identify partial matches between representations.
While many works from entity linking include some degree
of uncertainty, features of ontologies, such as functional and
inverse function properties, may be used to increase the cer-
tainty of these works. The possibility of link creation could
be maximized associating multiple Linkedator-API nodes to
form a federation, in which microservices can delegate vali-
dation to other federated nodes whenever appropriate.

9. REFERENCES

[1] S. Araujo, A. de Vries, and D. Schwabe. SERIMI
Results for OAEI 2011. In Proceedings of the 6th
International Conference on Ontology Matching.
CEUR-WS.org, 2011.

[2] R. Battle and E. Benson. Bridging the semantic Web
and Web 2.0 with Representational State Transfer
(REST). Web Semantics, 6(1):61-69, Feb. 2008.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34-43,
May 2001.

[4] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked data on the web (1dow2008). In Proceedings of
the 17th International Conference on World Wide
Web, WWW 08, pages 1265-1266, New York, NY,
USA, 2008. ACM.

[5] M. A. Casanova, V. M. P. Vidal, G. R. Lopes, L. A.
P. P. Leme, and L. Ruback. On Materialized sameAs
Linksets. In Database and Ezpert Systems
Applications: 25th International Conference, pages
377-384. Springer International Publishing, 2014.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1-16, Jan. 2007.

[7] J. Euzenat and P. Shvaiko. Ontology Matching.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

[8] A. Ferrara, A. Nikolov, and F. Scharffe. Data Linking
for the Semantic Web. International Journal on
Semantic Web and Information Systems, 7(3):46-76,
Jan. 2011.

[9] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[10] T. Heath and C. Bizer. Linked data: Evolving the web
into a global data space. Morgan & Claypool
Publishers, 2011.

[11] W. Hu, J. Chen, and Y. Qu. A self-training approach
for resolving object coreference on the semantic web.
In Proceedings of the 20th international conference on
World wide web - WWW 11, page 87, New York,
New York, USA, 2011. ACM Press.

[12] W. Hu and C. Jia. A bootstrapping approach to entity
linkage on the Semantic Web. Web Semantics:
Science, Services and Agents on the World Wide Web,
34:1-12, Oct. 2015.

[13] N. Islam, A. Z. Abbasi, and Z. a. Shaikh. Semantic
web: Choosing the right methodologies, tools and
standards. In 2010 International Conference on
Information and Emerging Technologies, ICIET 2010,
pages 1-5. IEEE, June 2010.

[14] H. Kopcke and E. Rahm. Frameworks for entity
matching: A comparison. Data Knowl. Eng.,
69(2):197-210, Feb. 2010.

[15] M. Lanthaler and C. Giitl. On Using JSON-LD to
Create Evolvable RESTful Services. In Proceedings of
the Third International Workshop on RESTful Design,
WS-REST ’12, pages 25-32, New York, NY, USA,
2012. ACM.

[16] R. P. Magalhaes, J. M. Monteiro, V. M. P. Vidal,

J. A. F. de Macédo, M. Maia, F. Porto, and M. a.
Casanova. QEF-LD - A Query Engine for Distributed
Query Processing on Linked Data. In Proceedings of
the 15th International Conference on Enterprise
Information Systems, pages 185-192. SciTePress, 2013.

[17] J. P. Martin-Flatin and W. Léwe. Special Issue on
Recent Advances in Web Services. World Wide Web,
10(3):205-209, Aug. 2007.

[18] S. Mcllraith, T. Son, and H. Z. H. Zeng. Semantic
Web services. IEEE Intelligent Systems, 16(2):46-53,
Mar. 2001.

[19] S. Newman. Building Microservices. O'Reilly Media,
Gravenstein Highway North, Sebastopol, CA. USA,
2015.

[20] L. Otero-Cerdeira, F. J. Rodriguez-Martinez, and
A. Gémez-Rodriguez. Ontology matching: A literature
review. Expert Systems with Applications,
42(2):949-971, 2015.

[21] M. Richards. Microservices vs. Service-Oriented
Architecture. O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472. O’Reilly, 2015.

[22] H. Stoermer, N. Rassadko, and N. Vaidya.
Feature-based entity matching: The fbem model,
implementation, evaluation. In Proceedings of the
22Nd International Conference on Advanced
Information Systems Engineering, CAISE’10, pages
180-193, Berlin, Heidelberg, 2010. Springer-Verlag.

© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3011141.3011155

https://doi.org/10.1145/3011141.3011155

