
An Ontology Alignment Framework
for Data-driven Microservices

Ivan Salvadori
ivan.salvadori@posgrad.ufsc.br

Dept. of Informatics and Statistics
Federal University of Santa Catarina
Florianópolis, Santa Catarina, Brazil

Bruno C. N. Oliveira
bruno.cno@posgrad.ufsc.br

Dept. of Informatics and Statistics
Federal University of Santa Catarina
Florianópolis, Santa Catarina, Brazil

Alexis Huf
alexis.huf@posgrad.ufsc.br

Dept. of Informatics and Statistics
Federal University of Santa Catarina
Florianópolis, Santa Catarina, Brazil

Eduardo C. Inacio
eduardo.camilo@posgrad.ufsc.br
Dept. of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Santa Catarina, Brazil

Frank Siqueira
frank.siqueira@ufsc.br

Dept. of Informatics and Statistics
Federal University of Santa Catarina
Florianópolis, Santa Catarina, Brazil

ABSTRACT
The integration of heterogeneous data sources can be done by using
data-driven microservices along with Semantic Web technologies.
However, it becomes a challenge in cross-domain scenarios, in
which data is described by heterogeneous ontologies. This work
discusses data integration problems in the context of microser-
vices and proposes an ontology alignment framework aimed at
achieving semantic data-driven microservices composition for data
integration in multi-ontology scenarios. The proposed framework
is evaluated through an experimental design to obtain a suitable sta-
tistical analysis of the effects that may be considered for modeling
data-driven microservices.

CCS CONCEPTS
• Information systems → Data exchange; Web data descrip-
tion languages; Web searching and information discovery; Web
services;

KEYWORDS
Semantic Web, Semantic Web Services, Ontology Matching, Mi-
croservices

ACM Reference Format:
Ivan Salvadori, BrunoC. N. Oliveira, Alexis Huf, Eduardo C. Inacio, and Frank
Siqueira. 2017. An Ontology Alignment Framework for Data-driven Mi-
croservices. In iiWAS ’17: The 19th International Conference on Informa-
tion Integration and Web-based Applications & Services, December 4–6, 2017,
Salzburg, Austria. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3151759.3151793

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
iiWAS ’17, December 4–6, 2017, Salzburg, Austria
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5299-4/17/12. . . $15.00
https://doi.org/10.1145/3151759.3151793

1 INTRODUCTION
Microservices are an emerging implementation approach to SOA
(Software Oriented Architecture) that encompasses tenets covering
fine-grained interfaces and architectural attributes such as isolated
state, loose coupling, and deployment and operation characteristics
[19]. The application of the microservices approach implies the
implementation of functionality and management of data indepen-
dently by different services [10]. The application of some tenets
introduces fragmentation of data and functionality between differ-
ent services, which may need to be undone to achieve some of the
business-specific goals.

Monolithic applications usually provide several features through
a single central point. In this scenario, there is no data integration
problem, since all information is managed by a single provider.
By adopting the microservices architecture, such information is
distributed into several independent small services developed with
distinct implementations and entity models. These characteristics
pose challenges on how to compose them back together. Seman-
tic Web technologies may be applied to provide machine-readable
descriptions of the data managed by a microservice. However, mi-
croservices may be semantically described by heterogeneous on-
tologies, which result in data interpretation problems. In order to
integrate the data managed by several microservices, it not only
sufficient to know the Web interfaces, but to also understand the
meaning of data. When this meaning is described by heterogeneous
ontologies it is mandatory to create equivalence relations that map
those concepts.

In previous workwe investigated approaches regardingmicroser-
vices composition [13]. However, in a microservices architecture,
data itself may be heterogeneous to the point of being described
by distinct ontologies, which might jeopardize the composition
process. In general, it is not realistic to assume that data provided
by services will always be defined by a single ontology [6], spe-
cially when they are developed by independent teams to fit distinct
applications. The ontology heterogeneity problem can be solved
with the alignment of the corresponding classes and properties
defined by the multiple ontologies that describe data provided by
microservices [12].

There have been some proposed works in the literature to tackle
the problem of integrating heterogeneous data exposed through

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

iiWAS ’17, December 4–6, 2017, Salzburg, Austria Ivan Salvadori, Bruno C. N. Oliveira, Alexis Huf, Eduardo C. Inacio, and Frank Siqueira

services interfaces. Trinh et al. [16] present a platform for integrat-
ing heterogeneous data sources. Fellah, Malki and Elçi [6] propose
a matchmaking algorithm and a partial ontology alignment mech-
anism for SAWSDL that uses similarity degrees among concepts
across ontologies considering syntax, linguistic and structural as-
pects. Vander et al. [17] tackle the problem of discovering and
querying data on the web, employing Linked Data principles. How-
ever, none of them specifically address data-driven microservices.

This work discusses the data integration problem associated with
the adoption of microservices and presents Alignator, a framework
for aligning heterogeneous ontologies used to describe microser-
vices’ data. It takes as input sample entities and exploits documented
service descriptions to find additional data that could be used in the
matching process. These sample entities may be provided by service
consumers, developers or reverse proxies, avoiding the need for a
complete dump of the data exposed by the service. Based on the
fetched data, Alignator employs ontology matching algorithms and
output alignment statements. The Alignator framework is evaluated
by an experimental design in order to identify factors that affect
the performance of the approach. Experimental results showed
the effectiveness of our proposal in aligning distinct ontologies of
datasets provided by microservices.

The remainder of this paper is organized as follows. Section
2 summarizes the main concepts required for understanding this
work. Section 3 describes in detail the definition of the research
problem. Section 4 proposes the Alignator framework and Section
5 discusses related work. Section 6 presents the evaluation and
describes the execution scenarios as well as the results obtained in
experiments. Finally, Section 7 draws the conclusion and presents
future work.

2 BACKGROUND
This section introduces the main concepts required to understand
the framework described in this paper.

2.1 Microservices
According to Zimmermann [19], microservices do not constitute a
new architectural style different from SOA (Software Oriented Ar-
chitecture). Instead, they can be seen as a particular implementation
approach to SOA in terms of service development and deployment.
Thus, microservices present an evolutionary and complementary
position to develop SOA applications, adhering to seven tenets
presented by Zimmerman [19]:

(1) fine-grained interfaces;
(2) business-driven development;
(3) IDEAL (Isolated state, Distribution, Elasticity, Automated

management and Loose coupling);
(4) polyglot programming and persistence;
(5) lightweight container deployment;
(6) decentralized continuous delivery; and
(7) DevOps with holistic service monitoring.
Microservices may be implemented by using Web Services and

Web APIs, or by using a message broker that supports message
queues and allows communication through publisher/subscriber
mechanisms. Microservices can also employ Semantic Web Ser-
vices technology, resulting in semantic microservices. According to

McIlraith, Son and Zeng [9] semantic Web Services should expose
information about available services, their properties, execution
interfaces, pre- and post-conditions, in a machine-readable format.
For Web APIs, managed resources, as well as their properties and
relationships, should be described. To achieve this, Web API de-
scriptions must be enriched by adding a semantic layer, which
facilitates the automation process of service discovery, selection
and invocation [9].

2.2 Data-driven Microservices
Service computing is a broad concept to describe initiatives that
allow companies to expose their core competencies as services
[2]. Similarly to how microservices can be seen as a particular
approach to implement SOA [19], data-driven microservices repre-
sent a particular approach to implement microservices. Two distinct
approaches are currently in use for designing microservices: data-
driven and action-driven approaches. Data-driven microservices
are responsible exclusively for managing the lifecycle of one or
more classes of entities, working as a data provider. The manage-
ment of entities’ lifecycle can also be seen as a business goal when
it applies business constraints. However, data-driven microservices
are limited to manage the information that may be used in a busi-
ness process instead of implementing such a process. On the other
hand, microservices that implement functionalities of a business
domain are defined as action-driven microservices. Actions usually
take as input properties of entities, perform some business process
and may produce an entity as a response.

Among the tenets presented by Zimmerman [19], business-driven
development may be considered the key principle for implementing
microservices. As discussed by Pautasso et al. [11], microservices
should be focused on business goals and how to enable them. Ac-
tually, both microservices approaches mentioned above can be
adopted to enable business goals. However, it is important to take
into consideration that the more specialized a business goal is, less
likely will be the reuse of the microservice in other domains. This
issue could most directly affect data-driven microservices, in which
data constraints regarding a given domain might not fit properly to
related domains. Although the adoption of business-driven devel-
opment helps to identify and conceptualize services, it should affect
their reusability as well as their composability. However, generic
services may not be the solution when modeling microservices,
since they might not provide full capabilities to perform specific
business goals with the desired results. With this in mind, devel-
oping microservices is about deciding how specific or reusable
services should be to tackle business goals.

2.3 Ontology Alignment
The adoption of microservices brings the idea of loose coupling and
independent maintenance, which can lead to the design of heteroge-
neous ontologies describing the same domain.The OWL vocabulary,
since its inception, includes predicates to denote equivalence of
individuals, classes and properties. However, OWL equivalence vo-
cabulary is not always used by ontology designers. This becomes a
problem when software agents are confronted with data described
by a different ontology, and are unable to use it because its seman-
tics may not be understood by the agent even after fetching the

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

An Ontology Alignment Framework
for Data-driven Microservices iiWAS ’17, December 4–6, 2017, Salzburg, Austria

ontology. The automatic detection of equivalence relations between
heterogeneous ontologies, known as ontology matching [5], aims
to solve this problem and is an active research topic.

The matching operation yields an alignment A1 between two
ontologies O1 and O2 [12]. To construct the alignment, the follow-
ing inputs may be used in addition to the ontologies: i) a known
alignment A0, ii) matching parameters (such as weights or thresh-
olds), and iii) external resources. The alignment contains a set of
correspondences between entities and properties of such ontologies.
Each correspondence denotes a relation of equivalence, general-
ization or disjointness between two entities of O1 and O2 [12].
Generally, these correspondences are determined by means of a
degree of similarity among the entities of ontologies. Euzenat and
Shvaiko [5] propose methods for assessing this similarity based on
specific features of entities. The basic techniques are classified as
follows:

• Name-based: considers their inputs as strings. This method
seeks for similar elements (classes, individuals, relations)
based on their names, labels or comments.

• Structure-based: instead of comparing only the names of
entities, the structure of elements found in the ontologies is
also compared, i.e, their taxonomic structure.

• Extensional: analyzes instances of classes. If classes of two
ontologies share individuals, the method most likely per-
forms a correct match for these classes.

• Semantic-based technique: is a deductive method that uses
the model-theoretic semantics. It often uses a reasoner in
order to infer the correspondences.

3 PROBLEM DEFINITION
A monolithic application usually provides several features through
a single software artifact. When a monolithic application is used to
manage the lifecycle of entities, it usually manages several types of
entities in a given domain. In this scenario, there is no data integra-
tion problem, since all information is managed by a single provider.
On the other hand, the adoption of a microservices architecture
results in a separation of such features into several independent
small services. In this scenario, each microservice manages a sub-
set of entities that may require combining entities provided by
other microservices in order to perform the same features that the
monolithic application is capable of. One can argue that each mi-
croservice should be able to perform a complete business goal; thus,
there is no need for composing them. This allegation takes into
account only the originally designed perspective. However, when
reusing a microservice in a different context, there is no guarantee
that a given goal can be fulfilled by only one microservice.

In addition to the single responsibility principle, which leads to
fine-grained interfaces, microservices take advantage of indepen-
dent development, leading to distinct implementations and entity
models. These characteristics pose challenges on how to compose
them back together to fulfill business goals. One possible solution is
adopting Semantic Web technologies to provide machine-readable
descriptions of the data managed by a microservice, as well as in-
teraction details. Although the adoption of semantic technologies
leverages data integration, the independence of modeling and de-
velopment could minimize their expected benefits. For instance,

microservices may be semantically described by heterogeneous
ontologies, which result in data interpretation problems. Ontology
alignment techniques can be adopted to tackle this issue, since they
aim at figuring out equivalent concepts among different ontologies.

In the context of microservices, ontology alignment has distinct
characteristics that differ from the traditional problem, such as:
entities are provided through a Web interface and the necessary
interaction information may also require alignment before usage.
However, the most important difference from the traditional ontol-
ogy alignment is that equivalence statements are obtained based on
entities resulted of the interaction between microservices and their
consumers, since it is not possible to directly access a dataset. This
work addresses the problem of putting diverse concepts together to
create an integrated model that allows the access and understand-
ing of the information provided by several microservices described
by heterogeneous ontologies. The integrated model is created by
applying ontology matching techniques specifically adapted to the
context of data-driven microservices.

4 ALIGNATOR FRAMEWORK
This section presents Alignator1, a framework for aligning hetero-
geneous ontologies used to describe the information managed by
data-driven microservices.

4.1 Data Intersection
Alignator relies on the existence of intersection between data ex-
posed by different services. Specifically, Alignator exploits the prop-
erty values shared between entities. As an example, consider the
description of a person, exposed by µSA where each person has a
foaf:name, and the description in another service (µSB) where the
name attribute is present as taxpayer:fullName. If µSB exposes a
query interface for taxpayer name, then a correferent can be found
with a foaf:name from µSA. Such type of data sharing is justifiable
in microservices, as maintaining links between the data in µSA and
µSB would incur a certain level of coupling between the interfaces
and deployment of the microservices.

In this scenario, the equivalence between foaf:name and tax-
payer:fullName is not known. In fact, it is not possible to differ-
entiate taxpayer:fullName from foaf:name. Yet, the intersection
can still be exploited by blindly obtaining potential related entities
from µSB based on the values of attributes of an entity obtained
from µSA. The set of related entities can be used to feed exten-
sional ontology matchers [12]; thus obtaining, among others, the
equivalence between foaf:name and taxpayer:fullName.

4.2 Alignator Framework Architecture
Alignator aims at finding out alignment triples among several on-
tologies considering microservice entities described by them. The
framework is divided into four main components, as depicted in
Figure 1. The first component is the µService Description Repository,
which stores documents that describe interaction details of reg-
istered microservices. The second component is a µService Entity
Loader, which is capable of obtaining related entities from regis-
tered microservices based on a sample entity. The third component,
the Ontology Manager, is responsible for managing ontologies used
1https://github.com/ivansalvadori/alignator-core

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

iiWAS ’17, December 4–6, 2017, Salzburg, Austria Ivan Salvadori, Bruno C. N. Oliveira, Alexis Huf, Eduardo C. Inacio, and Frank Siqueira

Alignator

µService
Repository

µService
Entity Loader

Ontology Manager
(with loaded entities)

Ontology
 Matcher

AROMA

O

...

entities

1 O2 On

µS1

µS2

µSn

...

entities

Registered
µServicesdescriptions

Entity sample

Alignments
Integrated
Ontology

PARIS

Figure 1: Alignator framework architecture

by registered microservices and their corresponding loaded entities.
Finally, the fourth component is the Ontology Matcher, designed
to find equivalent semantic properties and classes. The resulting
alignments produced by Alignator are then considered by a data
consumer interested in accessing entities semantically described by
different ontologies and managed by different microservices. Alig-
nator may also be adopted directly bymicroservices or middlewares,
as previously shown by Salvadori et al. [14].

The µService Repository stores semantic descriptions, which
describe the entities a microservice is able to manage and how to
obtain them.Alignator adopts Hydra [8] for representing microser-
vice descriptions. As shown in Figure 2, supported classes represent
a list of types of entities managed by a microservice. A supported
class has a list of URI templates, which describe the necessary in-
formation to perform HTTP requests to access entities that can
be uniquely identified by parameters. Those parameters are also
associated with concepts defined by an ontology, which allows to
properly understand the described microservice’s inputs.

1 {
2 "@context": "http://www.w3.org/ns/hydra/context.jsonld",
3 "@id": "http://api.example.com/doc/",
4 "@type": "ApiDocumentation",
5 "supportedClass": [{
6 "@id": "http://ontology#Entity",
7 "@type": "IriTemplate",
8 "template": "entities{?p}",
9 "mapping": [{
10 "@type": "IriTemplateMapping",
11 "variable": "p",
12 "property": "http://ontology#property"
13 }
14]
15 }
16]
17 }

Figure 2: Example of a semantic microservice description

The µService Entity Loader is responsible for loading related en-
tities from registered microservices. It is able to access the µService
Description repository and execute HTTP requests based on URI
templates. This component plays an important role, since the ontol-
ogymatching process is better performedwhen not only ontological
concepts are defined, but also when entities are considered. Then,
when an entity is loaded, the Ontology Manager is invoked to add
the loaded entity into the corresponding ontology.

:Client µServices

Register
(description,

ontology)

Align
(entity)

For each
URI template

Register
(description)

µServices

Register
(ontology)

µservices
Repository

Ontology
Matcher

Components

Ontology
Manager

Entity
Loader

:Alignator

Load
(entity)

Load

Service descriptions

HTTP Request

Entity Align
(loaded entities)

IntegrateOntology
(alignments)

Integrated ontology

Figure 3: Sequence diagram

The Ontology Manager is responsible for managing all ontolo-
gies used by registered microservices. It is also responsible for
creating an integrated ontology based on alignments produced by
the Ontology Matcher. It holds not only ontological concepts, but
also manipulates entities provided by microservices and loaded
by the µService Entity Loader, keeping independent repositories
for each domain ontology. There is also an entity number control
mechanism (ENCM) that allows setting the maximum number of
entities in each ontology. It means that when an ontology achieves
the threshold, the Ontology Manager flushes the entities of the
ontology so as to reduce memory consumption.

Finally, the Ontology Matcher is at the heart of Alignator. It
takes a set of ontologies as input and produces alignment state-
ments. The ontologies are described in OWL and the resulting align-
ments are represented through the use of owl:equivalentProperty
and owl:equivalentClass predicates. Typically, ontology matchers
are not expected to align simultaneously more than two ontologies.
Due to this limitation, ontologies are combined in pairs, resulting
in k-combinations defined by C(On , 2), where n is the number of
ontologies.

Currently, the ontology matcher component can use one of two
ontology matchers. One of them is AROMA (Association Rule On-
tology Matching Approach) [3]. AROMA employs extensional tech-
niques to analyze the set of instances of entities in order to compute
the correspondences and obtain the alignment between different
ontologies. The approach used by AROMA allows to match both
equivalence relations as well as relations between classes and prop-
erties of ontologies.

Another adopted ontology matcher is PARIS (Probabilistic Align-
ment of Relations, Instances and Schema) [15]. PARIS iterative com-
puting alignments for individuals, properties and classes, which
are counted in subsequent iterations. Instance alignment locates
a property shared by the ontologies that acts as a highly inverse
functional property and for which the two correferent individuals
(subjects) share the same object. For subclass relations, the proba-
bility that c1 ⊆ c2 is defined by the number of instances of c1 ∩ c2
in proportion to the number of instances of c1. Similarly, for sub-
properties, it assumes that the probability of p1 ⊆ p2 is related to
the number of subject-object pairs occurring with both p1 and p2
in proportion to those with p1.

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

An Ontology Alignment Framework
for Data-driven Microservices iiWAS ’17, December 4–6, 2017, Salzburg, Austria

4.3 Dynamic Perspective
In order to provide a suitable explanation of how Alignator works
along with its components and external actors, a sequence dia-
gram is depicted in Figure 3. The starting point is the semantic
description registry, where descriptions and ontologies used by
microservices are sent to the Alignator framework to indicate that
those microservices are participating members. During this process,
Alignator registers both the semantic description and the ontology
of a microservice separately into the µService Repository and the
Ontology Manager, respectively.

The ontology matching process starts when a client sends an
sample entity to Alignator, which in its turn asks the Entity Loader
to obtain all possible related entities from registered microservices.
Firstly, the Entity Loader obtains the semantic descriptions man-
aged by the µService Repository. Then, based on those descriptions,
URI templates are processed with all their input parameters re-
placed by the values extracted from the sample entity. This process
may result in several invalid URIs, which will return an HTTP 404
status code. However, any entities that result from this process
are forwarded to the Ontology Matcher to perform the matching
process and figure out new alignment triples. The resulting align-
ment triples are sent to the Ontology Manager to be incorporated
in the integrated ontology, which contains the concepts regarding
all registered ontologies, as well as their equivalent relations.

5 RELATEDWORK
Several approaches have been proposed to tackle the problem of
integrating heterogeneous data exposed through services inter-
faces. From one perspective, this problem can be understood as a
sub-problem of service composition, in which services act as data
providers. On another facet, the problem may be seen as crawling
Web Services while applying the Linked Data principles [1].

Trinh et al. [16] present a platform for integrating heteroge-
neous data sources. Linked widgets are the main components of
the proposed platform. They can be seen as Web Services with
some important distinctions. For instance, widgets are meant to
be used directly by end users. They are associated with a semantic
model and are able to collect data from one or more data sources as
well as to process and combine data through enrichment, transfor-
mation and aggregation. They are also capable of providing data
visualization. The platform includes a communication protocol
designed to facilitate interaction between widgets, allowing dis-
tributed mashups. Widgets are semantically annotated in terms of
their inputs and outputs and these annotations can be accessed via
SPARQL endpoints. The platform also provides a tolerant search,
which makes use of the Alignment API [4] to return widgets that
have similar semantic models. However, it only considers semantic
models based on inputs and outputs for creating data integration
mashups. Furthermore, the ontology alignment takes only concept
definitions into account, unlike Alignator which also considers
entities.

Fellah, Malki and Elçi [6] propose a matchmaking algorithm
and a partial ontology alignment mechanism for SAWSDL. It uses
similarity degrees among concepts across ontologies considering
syntax, linguistic and structural aspects. The algorithm takes as
input two ontologies and returns the matching degree between

their elements. In terms of syntax, it adopts Levenshtein similarity,
which measures the similarity of two strings on a scale from 0 to
1. Regarding linguistics, it uses WordNet, which represents a set
of synonyms for the English language. With respect to structural
aspects, it exploits the hierarchy tree of concepts. This work only
considers the semantics used to describe Web Services, neverthe-
less it does not consider concepts used to describe information.
Alignator does not make use of synonyms to create alignments.
On the other hand, it considers the content of managed entities,
which results in a richer input source. In addition, this related work
focuses on SOAP services, whilst Alignator focuses on data-driven
microservices.

Vander et al. [17] tackle the problem of discovering and query-
ing data on the Web, employing Linked Data principles [1]. The
querying problem is treated as a federated query problem, and data
services discover other related data services using their own data as
starting point (active discovery) and the requests they receive (reac-
tive discovery). Data services are described by their algorithmically
generated data summaries and the client is guided through hyper-
media control to perform queries using Triple Pattern Fragments
[18]. Issues related to ontology heterogeneity are not addressed.
However, clients and servers could be enhanced to reason over OWL
alignment triples and Alignator could be fed from data obtained
during dataset discovery and query execution.

6 EVALUATION
This section describes the experimental evaluation, as well as the
adopted methodology and the obtained results. The objective of
this evaluation is to find out which factors influence the alignment
strength regarding the adoption of Alignator with both AROMA
and PARIS ontology matching algorithms. In order to allow the
replication of experimental results, source code and instructions
for setting up this experiment are available in a public repository2.

6.1 Methodology
In order to evaluate ontology matchers, a test bench application and
a microservice have been developed, as depicted in Figure 4. A syn-
thetic dataset of 1,000 entities with characteristics to be exploited
by the evaluation is managed by both the test bench application and
the microservice. Each entity of the dataset contains four properties
associated with alphanumeric values and a payload information.
Two distinct ontologies were created to describe the entities man-
aged by the test bench application and by the microservice. The test
bench application was designed to interact with Alignator by send-
ing each entity of the dataset as an input to the ontology matching
process, considering different characteristics applied to the entities
provided by the microservice. The main goal is to identify impor-
tant characteristics that affect the resulting alignments in order to
establish guidelines for modeling microservices.

Four factors were considered for this evaluation: A) the number
of shared property values, B) the entity’s payload size, C) the corre-
spondence level between entities of the two ontologies meant to
be aligned and D) the order in which entities are sent to Alignator.
These factors were considered because they can be controlled or
considered in the microservices’ development process in order to
2https://drsalvadori.bitbucket.io/Alignator/iiwas2017

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

iiWAS ’17, December 4–6, 2017, Salzburg, Austria Ivan Salvadori, Bruno C. N. Oliveira, Alexis Huf, Eduardo C. Inacio, and Frank Siqueira

Entity

property1

property2

property3

property4

Payload

1000 documents

Payload

Test Bench

dataset dataset

µService

Entity

property1

property2

property3

property4

Payload

1000 documents

Payload

Entity Entity

Alignator

Alignments

GET entity

Figure 4: Evaluation scenario

maximize the alignment results. As shown in Table 1, two distinct
levels were associated with each factor: a low and a high level. For
factor A, previous experiments showed that AROMA requires indi-
viduals to share at least two common properties in order to produce
property or class alignments that could not be otherwise trivially
inferred. While PARIS has no such requirement, the levels of this
factor were chosen to accommodate AROMA and avoid distortions
in analysis. For factor B, the lower level represents a payload with
only one word, which is equivalent to one more property; and the
high level is equivalent to a small text property value with 100
words. Factor C is not totally controlled by the developer, however,
it is likely to be a known information and may be considered at
design time. Finally, factor D exploits the order in which entities
are sent to Alignator. Fixed access means that entities are sent to
Alignator in the same order throughout the experiment execution
whereas random access results in a different order for each obser-
vation. Fixed access could be seen as a software agent interaction
mode, and random access is closely related to a human interaction
mode, in which entities are not accessed following a predefined
procedure.

Factors in Table 1 describe data and access pattern. The Ontol-
ogy Matchers are not considered factors. Instead, each matcher is
analyzed independently, aiming to identify how it responds to the
scenarios modeled by these factors, coupled with Alignator.

In order to obtain a statistical analysis of effects, a 2k experimen-
tal design [7] was adopted, in which the aforementioned factors and
their levels were considered for each of the four evaluated factors.
For each ontology matcher algorithm, the experiment was repli-
cated three times to properly account for variability, resulting in 48
observations. The execution order was completely random to make
sure that response variables are independently and individually
distributed. The experiment was executed using the computational
infrastructure provided by the Cloud Computing for Cooperation3
(C3 Lab), with the following configuration: a dedicated server with
24 Intel Xeon X5690 processors at 3.47GHz frequency and 148 GiB
of primary memory, running the CentOS-7 operating system and
openjdk version 1.8.0_141 with -Xmx set to 2 GiB for both the
microservice and the test bench application.

6.2 Analysis of Effects
The effects of the factors in Table 1 were analyzed with respect
to the number of requests necessary until the alignment strength
reported by the matcher under analysis reached a satisfactory value.

3http://www.c3lab.tk.jku.at

Table 1: Factors and levels

Factors -1 +1

A Shared property values 2 4
B Payload size 1 word 100 words
C Entity correspondence level 50% 100%
D Access order fixed random

Two response variables were used as possible definitions of sat-
isfactory: N0% and N1%, where the Nδ% notation should be read
as “the number of requests made by the test bench application
(Figure 4) before the reported alignment strength for ont0:o0p1
owl:equivalentProperty ont1:o1p1 had a value s such that s −
smax ≤ δ

100 , where smax is the maximum strength observed for
any of the 1000 requests in the experiment.” Informally, N0% and
N1% represent the number of requests until, respectively, reaching
maximum alignment strength and reaching maximum alignment
strength with 1% tolerance (as for both matchers s ∈ [0, 1]).

Analysis for N0%. Two linear models yielding N0% from the eval-
uated factors were adjusted to the experimental data. One model
for the AROMA matcher and another for PARIS. Both homoscedas-
ticity and normality assumptions, required by the adopted analysis
method, were met by the models. Further, an adjusted R2 of 0.9712
was obtained for the model corresponding to AROMA, and an ad-
justed R2 of 0.6826 for PARIS. Both R2, which denotes a good fit
and, thereby, supports the conclusions on significance of effects.

Among all considered factors and their pairwise interactions for
AROMA, the following presents statistically significant effect at a
level of significance of 5% (α = 0.05): (C) entity correspondence
level, (A) shared property values, (D) access order, (A+C) the inter-
action between shared property values and entity correspondence
level, (C+D) and the interaction between entity correspondence
level and access order. For PARIS, the significant factors and pair-
wise interactions are: C, A, D, A+C, C+D. The payload size presented
no statistically significant effect on the response variable as well
as other not mentioned interactions for both ontology matchers.
Figure 5(a) and Figure 5(b) presents, respectively for AROMA and
PARIS, Pareto charts with the ANOVA mean square and the cu-
mulative percentage of variability explained by the statistically
significant factors. These charts reveal that for both matchers, fac-
tor C (correspondence level) is responsible for almost all variability
in N0%. Important differences, revealed by the Pareto charts, are
that PARIS is more sensitive to access order (D) and less sensitive to
the number of shared properties (since it requires only one shared
property between individuals to infer correferences).

The different requirements of AROMA and PARIS, for the num-
ber of shared properties, also appears in Figure 6. This chart displays
the effects on N0% when each factor is changed from its low level (-
1) to its high level (1). For AROMA, increasing the number of shared
properties reduces N0% from 170 to 118. This effect is not observed
for PARIS, which is designed to identify correferent individuals
from a single shared property.

Figure 6 reveals that the most significant factor for both matchers
is the correspondence level (C). In the case of AROMA, changing

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

An Ontology Alignment Framework
for Data-driven Microservices iiWAS ’17, December 4–6, 2017, Salzburg, Austria

corresp. lvl

shared props.

shared props. x corresp. level

corresp. lvl x exec. order

exec. order0

50000

100000

150000

200000

M
ea

n
sq

ua
re

180565

31827

5043 1365 1045 0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge81.71

96.11 98.39 99.01 99.48

(a)

corresp. lvl

shared props. x corresp. level

payload size

shared props.

payload size x exec. order0

10000

20000

30000

40000

M
ea

n
sq

ua
re

31008

8353

928 853 417 0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge

73

92.66 94.85 96.85 97.84

(b)

Figure 5: Pareto charts for the N0% models: (a) AROMA and (b) PARIS.

A

A
R

O
M

A

−1 1

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

B

−1 1

C

−1 1

D

−1 1

9
9
3

9
9
3
.5

9
9
4

9
9
4
.5

9
9
5

9
9
5
.5

9
9
6

AROMA

PARIS

re
q

 :
 s

 =
 s

m
a

x

P
A

R
IS

Figure 6: Main Effects plot for response variable N0% (first
request with maximum strength)

C from 50% (-1) to 100% (+1), a decrease in N0% from 205 to 83 is
expected. This result is intuitive, since AROMA will always be able
to identify correferent individuals, and will have more evidence
sooner to infer that o0:o0p1 owl:equivalentProperty o1:o1p1.
In the case of PARIS, the opposite occurs:N0% is expected to increase
from 993.29 to 995.75 when the correspondence level increases.
PARIS identifies only rdfs:subPropertyOf (⊆) relations between
properties, which Alignator combines using simple average to infer
owl:equivalentProperty (=). For these experiments, in general,
Pr (o0p1 ⊆ o1p1) ≥ Pr (o1p1 ⊆ o0p1) when not all individuals
have correspondents (through these properties).

Finally, Figure 6 reveals that the range on which N0% is affected
by any factor is considerably small: from 993 to 996. This range is
negligible in practical scenarios and occurs due to the significant
slower rate which PARIS increases the strength of its alignments.
The reader can refer to Figure 8(a) and Figure 8(c) showing align-
ment strength versus request number, respectively for AROMA and
PARIS. Further details on the evolution of alignment strength is
discussed in 6.3.

A

A
R

O
M

A

−1 1

1
0

1
5

2
0

2
5

3
0

B

−1 1

C

−1 1

D

−1 1

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

AROMA

PARIS

re
q
 :
 s

 -
 s

m
a

x
<

 0
.0

1

P
A

R
IS

Figure 7: Main Effects plot for response variable N1% (first
request with strength within 1% of maximum)

Analysis for N1%. As previously discussed, while it highlights
behavior differences among AROMA and PARIS, N0% is somewhat
disconnected from a practical scenario. Using N1% offers a coun-
terpoint. Again two linear models were generated, now with an
adjusted R2 of 0.8485 for AROMA and 0.9847 for PARIS.

Among all considered factors, and their pairwise interactions,
for AROMA, the following factors presented statistically signifi-
cant effect at a level of significance of 5% (α = 0.05): (C) entity
correspondence level, (A) shared property values, (D) access order,
(A+C) the interaction between shared property values and entity
correspondence level, and (C+D) the interaction between entity
correspondence level and access order. For PARIS, the significant
factors and pairwise interactions are only factors C and D.

Figure 7 reveals a reverse situation from that observed for N0%:
the range in which N1% is affected is small for AROMA (from 11 to
27) and larger for PARIS. Factor C (correspondence level) remains
the factor with largest impact for both aligners, and for PARIS, N1%
is expected to decrease from 563 to 754 when C changes from 50%
to 100%.

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

iiWAS ’17, December 4–6, 2017, Salzburg, Austria Ivan Salvadori, Bruno C. N. Oliveira, Alexis Huf, Eduardo C. Inacio, and Frank Siqueira

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request sequence id

A
lig

nm
en

t s
tr

en
gt

h

o0p1=o1p1

(a)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request sequence id

A
lig

nm
en

t s
tr

en
gt

h

o0p1=o1p1

(b)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request sequence id

A
lig

nm
en

t s
tr

en
gt

h

o0p1=o1p1

(c)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request sequence id

A
lig

nm
en

t s
tr

en
gt

h

o0p1=o1p1

(d)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Request sequence id

O
nt

ol
og

y
m

at
ch

in
g

tim
e

in
 m

ill
is

*

*

**

*

*

*
*
**

*
*
*
**
*
**

*

**
*

*

*
**
*
**

*
*

*

*

*

*

*
**

*

**
*
*
*
*
*

*
*

*

*

*

*

*
*
*

*

*

**

*
**
*
*

**

*

*

*

**

*

*

*

**

**
*
*
**

*

*
*

*

*

*

*

*
*
**
**

*

*
**
*
*
*

*
*
*

*

*
**

*
**
**
**

*

*

*
*
*
*

*

*

*
*

*
**
*

*
*
**

*
*
**

*
*

*
*

**

*

*
*
*

**

*

*

**
*
**
*

*

*
*

*

*
*
**
**
*

*
*
**

*

**

*
*
**

*

*
*
**
**
*

*
**

*
*

*
*

*

*
*

*
*

*

*
*

*

**
*
*

**
*

**

*

*
**
*
*

*

*

*
*

*

*

*

*
*

**

*

*

*

*

**

*

*

**

*
*
**

*

*

*

**

*

*

*

*
*

*
*
**
*

*
**

*

*

*
*
*

*

*

*
*
**

*
*
*

*

*
*

*

**
*

*

**

*
*
*

**
**
*

*

*
*

*
*
*
*

*
*

*
**

*

**
*
*

*
*

*

*
**
**
*

*
*
*
*

*

*

*
*

*

*

*

*

*

*
*
*

*
*
*
*
*
*

*

*

*

*
*

*

*

**
**
*
**
**

*

*

**
*
*

*

*
*
*
*

*
*

*

**

*
*
*

*

*
*

*
*

*
**
*

*

*
*
*
**

*

*

**

*

**

*

*

*

*

*

*

*
*

*
*
*

**

*
*

*

*
*
*
*

*

*
**

*

*

*
**
*
**

*
*
**
*
*

**

*

*

*

*

*

**

*
*

*
*

*
**
*

*

**
**

*

**

**
*

**
**

*

*

*
**

*

**

*

**
*

(e)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Request sequence id

O
nt

ol
og

y
m

at
ch

in
g

tim
e

in
 m

ill
is

*

*

**

*

*

*
*
*
*

**
*
*

*

*
*

*
*

*

**
**

**
*

**
**

*
**

*

*

*

*

*

**

**
*
*

*
**

**
*

*

**

*

**

*

**
**
*

*

*

*

*
*

*

*
*
**
**
*
**

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*
**
*

*

*
*

*

*

*

*

*

*

*
*

*

**

*

**

**

**
*

*

**
*
**
**
*

*

*

**

*

**

**

**
*

*

*

**
*

*

*

**

(f)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Request sequence id

O
nt

ol
og

y
m

at
ch

in
g

tim
e

in
 m

ill
is

*

*

*

*

*
*
*
*
*

**

**

*

**

*

*

*
*

*
**
**

*

*

*
**

**
**

**

**
*

*

*

*

*
*
**

*
*
*

*
*

**
**
*
*
*
**

**
*

*

*

*

*
**
*

*

*
*
*
*

*
**

*

*

**

*
*
**

*

*
*
*
*

*
**

*
*
*
**

*

*

*

**
*

*
**
*
*
*

*
**
**

*
**
*

**
*
**

*

**
*

*
**
*
*
*

*
*
*
*
**

*
*
*
**

**
**
*

*
**
**
**

**

*
*
*

*
*

**
*
*

**

**
*
**
*

*

*
*
*
**

*

*
*

*

*
*
*

*

*
**

**

*

*

*

**

*

*

*

*
*

**

**

**

*
*
*
**
*
*
*
*

**
**
*
*
**

*
*
**

*

*
*

*

*
**
*
*

*
**

*

**

*
*

*

*
*

*

*

*
**
**

*

*
**
*
**

**
*
**
**
**
*
*
**

*

*
**
*
**
**

**
*

*

*
*

**

*

*

*

*

*
*

*

*
*
*

*
*
*
*
*

*

*
*
*
*

*

*
*
*
*

**

**
*

**

*
*
*

*

**

**
*
**
*

*
*

**
*

*
*
*
**

*

**
*
*

**

*
*

*
*

*
*
*
**
*

**

*

*
*

*

**

*
**
*
*

*

**

**
*
*
**
**
*

*

*

**

*
*
*
**
*

**
*

**
**
**

*

*

*
*
*
*
*

*
*
*
*

*

*
*

*

*
*

**
**

*

*

*
**

*

*

(g)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Request sequence id

O
nt

ol
og

y
m

at
ch

in
g

tim
e

in
 m

ill
is

*

*
*
**
*

*

*
*

*

*
*

**
**
*

**
**

*
**

*
*
*
**
*

*
**
*

*

*
*
**

*
*

**

*

*
**
*

**
*
**

*

**

**
**

*
*
*

*
*

**
*
*

*
**
*

**

*

**
*
*

*

**

**

*
*

*

**
*

*
**

*
*
**

**

**
*
*

**
*

**

*
*
*

*
**

**
*

*

**

*

*
**

*
*

**

**

*
*
*

*

*

*
*
*

*

*
*

*

**

*
**

**
*

**

*

*

*

**

*
*

*

**
*

*

**

*
*
*

*
**

*

**

**

*

**

*

**

*
*

**

*

*

*

**

*

**
*
*

**
**
*
**

*

*
**
**

**

*
*
**
**
*
**

*
**

**
**

**
**

*

*

**
*
**

*

*

*
*
*

**
*

*

**

(h)

Figure 8:Alignment strength and timeof alignment per request; (a) alignment strengthwithout ENCM-AROMA; (b) alignment
strength with ENCM=1000 - AROMA; (c) alignment strength without ENCM - PARIS; (d) alignment strength with ENCM=100 -
PARIS; (e) alignment timewithout ENCM -AROMA. (f) alignment timewith ENCM=100 - AROMA; (g) alignment timewithout
ENCM - PARIS. (h) alignment time with ENCM=100 - PARIS

Final remarks. Most preceding discussion centered on factors A
and C. Factor B (payload size) was only significant in the model for
N1% using AROMA. However, the effect (decrease of N1% from 20
to 18) is negligible for all practical purposes. Factor D (access order)
reveals that the particular ordering of the data in the microservice
is, in the four models, above average with respect to reaching high
alignment strengths. However, we observe that the effects, even
when statistically significant, are small in the light of practical
applications. The largest observed effect of D, in absolute values, is
in Figure 7 when N1% increases from 635 to 664 for PARIS when
access is switched from fixed to random. The Pareto graphs also
show that the contribution of D to variability pales in face of factor
C.

In a practical scenario, reaching themaximum alignment strength
may not be necessary, as usually the threshold is fixed for the
adopted matcher. The response variable N1% is closer to this sit-
uation. AROMA requires fewer requests to reach high alignment
strengths, but it is affected by factor A (shared properties), requiring
at least 2 shared properties to generate alignments. PARIS, on the
other hand, is not affected by A, but presents a slower evolution of
the alignment strength. In summary, the choice between AROMA
and PARIS depends on (1) whether the individuals have properties

acting as composite keys or as a single key; (2) how many requests
before alignment strength reaching a threshold are acceptable for
the specific application.

6.3 Ontology Matching Time
In addition to the experimental design presented in the last section,
an analysis regarding the ontology matching was conducted to
study Alignator’s behavior. As aforementioned, Alignator relies
on the existence of intersection between data exposed by different
data-driven microservices. Based on a sample entity, it loads related
entities from registered microservices. Hence, the resulting entities
are added to each ontology that is aligned by the Ontology Matcher
component. The more entities are in an ontology, the higher is the
alignment strength. However, accumulating entities into ontologies
affects the time to obtain alignments. In order to address this issue, a
mechanism to control the number of registered ontologies’ entities
was developed in the Ontology Manager component, as mentioned
in Section 4. By defining a maximum number of entities, the on-
tology matching time is reduced while the maximum alignment
strength is achieved.

Figure 8 shows the alignment strength and ontology matching
time per request for each entity of the dataset. In (a) and (c) of

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

An Ontology Alignment Framework
for Data-driven Microservices iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Figure 8, one can notice that the maximum alignment strength
that states o0p1 described by the ontology http://ontology0# is
equivalent to o1p1 described by the ontology http://ontology1#
is achieved before the 100th request. However, the entity number
control mechanism (ENCM) was not enabled. As a consequence of
that, the ontology matching time required to align these properties
is significantly increased, as can be seen in (e) and (g) of Figure 8.
By setting the ENCM to 100, when a given ontology reaches 100
entities, all entities are discarded. As can be seen in (b) and (d) of
Figure 8, the alignment strength drops after every 100 requests. It is
important to mention that the highest achieved alignment strength
is considered despite this drop caused by ENCM. As at any time, at
most 100 entities are considered, the ontology matching time per
request is significantly reduced, as shown in (d) and (h) of Figure 8.
With respect to the alignment strength attained by both ontology
matchers, we can see that AROMA reaches a maximum before
PARIS, as shown in Figure 8 (a) and (c). The ontology matchers
also required different times for performing alignments. For both
configurations, with and without ENCM, PARIS spent significantly
more time when compared to AROMA. Furthermore, the ontology
matching time analysis shows the importance of finding out a
suitable number of entities that are required to attain the maximum
alignment strength in order to ensure an adequate performance and
alignment strength. One can notice that ENCM set to 100 entities
was appropriate to AROMA, as shown in Figure 8 (a), which was
able to achieve its maximum alignment strength. On the other hand,
as can be seen in Figure 8 (e), this configuration was inappropriate
to PARIS, resulting in lower alignment scores.

7 CONCLUSION AND FUTUREWORK
This paper discussed the drawbacks regarding data integration
caused by the adoption of the microservices architecture. It also
proposed Alignator, a framework that aims to create an integrated
ontology for semantic data-driven microservices integration in
a multi-ontology scenario. Alignator is able to invoke and load
entities provided by registered microservices in order to produce
alignment statements that represent semantic connections between
concepts used to describe microservices data. By considering these
alignments, it is possible to improve the integration of data-driven
microservices and, moreover, improve the effectiveness of compo-
sition approaches based on data linking [13].

The proposed framework was evaluated under an experimental
design encompassing four factors. Evaluation results indicated the
factors that influence the alignment strength, such as the number of
property values shared between related entities, the correspondence
level of entities and the order in which entities are loaded. Results
obtained by the analysis of effects showed the impact of such factors,
which can be considered for modeling microservices. Results also
showed the importance of the entity number control mechanism
to ensure a suitable ontology matching time.

In future work Alignator will be evaluated with other ontology
matchers besides AROMA and PARIS. Thus, it will be possible to
perform a comparison among a wide variety of algorithms in order
to maximize the quality of alignments. In order to address different
characteristics of entities and microservices, Alignator could use
more than one ontology matcher at runtime. Thus, a mechanism

would be necessary to perform the most appropriate algorithm in
the face of different scenarios. Additionally, the maximum num-
ber of entities managed by the Ontology Manager component is
currently defined by a parameter before runtime. A dynamic mech-
anism for automatically defining this number at runtime is interest-
ing so that maximum alignment is achieved with the least number
of requests, minimizing thereby the ontology matching time.

REFERENCES
[1] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story

So Far. Int. Journal on Semantic Web and Information Systems 5, 3 (jan 2009), 1–22.
https://doi.org/10.4018/jswis.2009081901

[2] Glaucia Melissa Medeiros Campos, Nelson Souto Rosa, and Luis Ferreira Pires.
2014. A Survey of Formalization Approaches to Service Composition. In 2014
IEEE International Conference on Services Computing. IEEE, 179–186. https://doi.
org/10.1109/SCC.2014.32

[3] Jérôme David. 2007. Association Rule Ontology Matching Approach. Int. Journal
on Semantic Web and Information Systems 3, 2 (2007), 27–49. https://doi.org/10.
4018/jswis.2007040102

[4] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos.
2011. The Alignment API 4.0. Semant. web 2, 1 (Jan. 2011), 3–10.

[5] Jérôme Euzenat and Pavel Shvaiko. 2007. Ontology Matching. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[6] Aissa Fellah, Mimoun Malki, and Atilla Elçi. 2016. Web Services Matchmaking
Based on a Partial Ontology Alignment. Int. Journal of Information Technology
and Computer Science (IJITCS) 8, 6 (June 2016), 9–20. https://doi.org/0.5815/ijitcs.
2016.06.02

[7] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley. 720 pages.

[8] Markus Lanthaler. 2013. Creating 3rd Generation Web APIs with Hydra. In Proc.
of the 22nd International World Wide Web Conference (WWW2013). International
World Wide Web Conferences Steering Committee, Geneva, Switzerland, 35–37.

[9] S.a. McIlraith, T.C. Son, and Honglei Zeng Honglei Zeng. 2001. Semantic Web
Services. IEEE Intell. Syst. 16, 2 (2001), 46–53. https://doi.org/10.1109/5254.920599

[10] Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media, Inc.
[11] Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai

Josuttis. 2017. Microservices in Practice, Part 1: Reality Check and Service Design.
IEEE Software 34, 1 (jan 2017), 91–98. https://doi.org/10.1109/MS.2017.24

[12] Shvaiko Pavel and Jerome Euzenat. 2013. Ontology Matching: State of the Art
and Future Challenges. IEEE Trans. Knowl. Data Eng. 25, 1 (Jan. 2013), 158–176.
https://doi.org/10.1109/TKDE.2011.253

[13] Ivan Salvadori, Alexis Huf, Ronaldo Santos Mello, and Frank Siqueira. 2016.
Publishing Linked Data Through Semantic Microservices Composition. In Proc.
of Int. Conf. on Information Integration and Web-based Applications & Services.
ACM. https://doi.org/10.1145/3011141.3011155

[14] Ivan Luiz Salvadori, Alexis Huf, Bruno C. N. Oliveira, Ronaldo Santos Mello, and
Frank Siqueira. 2017. Improving Entity Linking with Ontology Alignment for
Semantic Microservices Composition. International Journal of Web Information
Systems (jul 2017), 00–00. https://doi.org/10.1108/IJWIS-04-2017-0029

[15] Fabian M Suchanek, Serge Abiteboul, and Pierre Senellart. 2011. Paris: Proba-
bilistic alignment of relations, instances, and schema. Proceedings of the VLDB
Endowment 5, 3 (2011), 157–168.

[16] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Elmar Kiesling, and A Min Tjoa. 2015.
Distributed mashups: a collaborative approach to data integration. Int. Journal
of Web Information Systems 11, 3 (aug 2015), 370–396. https://doi.org/10.1108/
IJWIS-04-2015-0018

[17] Miel Vander Sande, Ruben Verborgh, Anastasia Dimou, Pieter Colpaert, and
Erik Mannens. 2016. Hypermedia-Based Discovery for Source Selection Using
Low-Cost Linked Data Interfaces. International Journal on Semantic Web and
Information Systems (IJSWIS) 12, 3 (2016), 79–110.

[18] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-
rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016.
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web.
Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (mar
2016), 184–206. https://doi.org/10.1016/j.websem.2016.03.003

[19] Olaf Zimmermann. 2016. Microservices tenets: Agile approach to service de-
velopment and deployment. Computer Science - Research and Development (nov
2016). https://doi.org/10.1007/s00450-016-0337-0

c© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1145/3151759.3151793

https://doi.org/10.1145/3151759.3151793

