Automatic Semantic Enrichment of Data Services

Bruno C. N. Oliveira
bruno.cno@posgrad.ufsc.br
Department of Informatics and Statistics
Federal University of Santa Catarina
Florianépolis, Santa Catarina, Brazil

Ivan Salvadori
ivan.salvadori@posgrad.ufsc.br
Department of Informatics and Statistics
Federal University of Santa Catarina
Florianépolis, Santa Catarina, Brazil

ABSTRACT

In recent years, many approaches and tools have emerged to as-
sist in the semantic enrichment of Web services. Many researchers
have been directing efforts in providing semantic annotations and
enriching service descriptions. However, the provisioning of se-
mantically enriched representations through data services has been
little considered in the literature, despite of its significant impact
on the effectiveness of data integration solutions. In this paper
we present a novel method aimed at enriching data provided by
services, enabling them to dynamically provide semantic represen-
tations. We introduce an architecture, called OntoGenesis, capable
of i) constructing and evolving domain ontologies for data services
and ii) aligning the properties of such ontologies with external data
sources, so as to enhance the reuse of well-known concepts in or-
der to facilitate further integrations. Experiments using real-world
bilingual datasets show the applicability of our proposal and the
obtained results reveal that alignments achieve satisfactory levels
of precision and recall.

CCS CONCEPTS

« Information systems — Web services; Web applications; On-
tologies; » Applied computing — Computing in government;

KEYWORDS

Web Services; Data Services; Semantic Web; Ontology Construction;
Property Matching.

ACM Reference Format:

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira. 2017.
Automatic Semantic Enrichment of Data Services . In iiWAS ’17: The 19th
International Conference on Information Integration and Web-based Applica-
tions & Services, December 4—6, 2017, Salzburg, Austria. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3151759.3151783

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

iiWAS ’17, December 46, 2017, Salzburg, Austria

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5299-4/17/12...$15.00
https://doi.org/10.1145/3151759.3151783

Alexis Huf
alexis.huf@posgrad.ufsc.br
Department of Informatics and Statistics
Federal University of Santa Catarina
Florianopolis, Santa Catarina, Brazil

Frank Siqueira
frank.siqueira@ufsc.br
Department of Informatics and Statistics
Federal University of Santa Catarina
Florianopolis, Santa Catarina, Brazil

1 INTRODUCTION

The number of Web services, scattered in public and private net-
works, that are meant to provide data already stored in some data
source has been constantly increasing. Such Web services are also
referred to as data services and are useful for providing access in-
terfaces to data sources that cannot be completely disclosed [8].
Additionally, such services can also employ Semantic Web technolo-
gies [4] in order to provide data in a sophisticated machine-readable
format and, therefore, be easily reused by third parties and inte-
grated to complex Web applications. Several researchers have been
discussing the benefits of employing Semantic Web services; for in-
stance, enhance data interoperability [23] and assist in automating
tasks such as service discovery, selection, composition, etc. [18, 26].

The implementation and adoption of Semantic data services in
real-world applications, however, are limited mainly due to the
format of stored data. Such data is usually stored in a syntactic
form, i.e., only the structure of the data is specified, but not the
semantics. In addition, various major challenges contribute to this
lack of adoption. Some common issues include the time and effort
demanded in the construction of domain ontologies and the seman-
tic annotation of data services. These are complex tasks that require
domain expert knowledge. Concerns over agreement in semantic
modeling must also be taken into account. In practice, assuming
that data provided by services will always be defined by a universal
ontology is not realistic [12]. It brings a new challenge concerning
Semantic data services development and integration, due to the
existing heterogeneous ontologies describing the same real-world
entity.

Since building an ontology for a data source is a difficult and time
consuming task by its nature, some support tools [7, 9, 19, 22] have
been developed to help users in the ontology construction process.
However, these tools often require availability of data dumps for
generating a domain ontology. This limitation hinders the adoption
of such tools in SOA (Service-Oriented Architecture) applications,
in which availability of data depends on the service interface. Ex-
tensional ontology matching techniques [11] attempt to solve the
problem of ontology heterogeneity using instance data to infer
equivalences at the schema level. On the other hand, data services
are susceptible to changes, and ontologies that describe data are
required to evolve in parallel, otherwise they become inconsis-
tent. Moreover, in order to perform extensional matching, ontology

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

iiWAS *17, December 4-6, 2017, Salzburg, Austria

matchers generally assume that the two ontologies that are to be
matched have already been created and associated with a large set
of instances. This becomes a challenge when such data is partially
available (due to the service interface) and when instance data of
both ontologies are unrelated. Yao et al. [30] provide a mechanism
to create a unified ontology based on a set of JSON documents pro-
vided by a Web service. Nevertheless, the generated ontology does
not leverage semantic concepts defined in external sources, aiming
to reuse existing concepts and minimize heterogeneity issues. In
addition, previous works have proposed approaches to enrich ser-
vices with semantics, most of them focusing on service descriptions
[6, 14, 16]. In contrast, few proposals address the enrichment of
data provided by services. For instance, Salvadori et al. [23] propose
a method to enrich representations of data-based microservices
with owl: sameAs and rdfs:seeAlso links. A framework aimed at
identifying alignments between heterogeneous ontologies is also
proposed. A drawback in this approach is that microservices must
already employ a domain ontology and provide semantic data.

This work proposes an architecture, called OntoGenesis, aimed
at generating domain ontologies and automatically enriching data
services with semantic concepts defined in such ontologies. The
benefits of our proposal are two-fold. Firstly, OntoGenesis provides
a way to gradually build domain ontologies from syntactic rep-
resentations provided by data services and to reuse well-known
concepts by identifying data intersection with external sources.
Secondly, the architecture enables the migration of syntactically
defined data services toward Semantic data services. The evaluation
of our proposal relies on open government data regarding police
reports, published by the Public Security Secretariat of the state of
Sio Paulo (SSP/SP)! in Brazil, as well as ontologies and instances of
DBpedia? and GeoNames> datasets. Results show that our approach
can achieve suitable F-Measure scores as well as better performance
in comparison with other state-of-the-art ontology matchers.

The remainder of this paper is organized as follows: Section 2
summarizes the main concepts that are required for understanding
this work. Section 3 presents an overview of the semantic enrich-
ment approach for data service representations, while the OntoGe-
nesis and its main components are detailed in Section 4. Section
5 presents the evaluation study and the obtained results. Related
research efforts found in the literature are discussed in Section 6.
Finally, Section 7 draws the conclusions and presents some perspec-
tives for future work.

2 BACKGROUND
2.1 Data Services

To make data publicly available on the Web, data stores are of-
ten wrapped by Web services, which provide a Web interface for
handling data. Such Web services hereafter will be called as data
services or just services.

The main feature of data services is the manipulation of data in
the sense that they act as data providers, allowing abstraction of
access to data sources. Bianchini et al. [5] define a data service s
as an operation, method or query to access data from a given data

Thttp://www.ssp.sp.gov.br/transparenciassp/
Datasets available at: http://wiki.dbpedia.org/Downloads2015-10
3Datasets available at: http://download.geonames.org/export/dump/

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira

source. These services are modeled as a set of: i) service inputs s;,
which consist in parameters that are needed to invoke the service
and access data; and ii) outputs s,, representing data that is accessed
through service s. Data access is usually resource (i.e., entity) ori-
ented, that is, a consumer requests a resource to a service, passing
si, and receives a representation of such resource, s,. The output
representation can be seen as a snapshot of the state of a resource
at a given time, available in different formats, such as XML, JSON,
HTML, etc. It is worth noting that data services are not tied to any
particular technology; they can be implemented, for example, using
SOAP or REST technology stacks.

A crucial factor that hinders service integration occurs in the
conceptual level, since data services often employ different ter-
minologies (for the attribute names, for instance), even though
providing information about the same real-world concept. To over-
come this issue, Semantic Web technologies [4] may be applied to
data services, resulting in Semantic data services. This approach is
aimed at providing machine-readable descriptions of data, there-
fore facilitating its integration and reuse. According to Mcllraith et
al. [18], Semantic Web services should expose information about
available services, their properties, execution interfaces, pre- and
post-conditions, in a sophisticated machine-readable format. Re-
garding Semantic data services, managed resources, as well as their
properties and relationships, should also be semantically enriched.
This means that representations provided by such services should
be associated with semantic concepts.

On the other hand, Lira et al. [15] consider Semantic data services
as access points to data that is natively stored as RDF (Resource De-
scription Framework) triples in a particular data source. In contrast,
we argue that Semantic data services provide semantic represen-
tations, regardless of how data is stored and maintained. Thus,
enriching data service representations means to provide semantic
data taking advantage of RDF formats (such as JSON-LD).

2.2 Ontology Construction and Matching

Ontologies play an important role in the Semantic Web, especially
with regard to Web services. In general, ontology engineers and
domain experts manually develop domain ontologies to provide a
domain-specific model suitable for describing the semantics of a
service. Most effort involved in semantically enriching services is,
therefore, in the construction of ontologies as well as in adapting
and evolving them in accordance with demanded changes. Ontology
Learning (OL) [17] is a topic interested in automating and thereby
facilitating the creation of ontologies by ontology engineers and
domain experts. In this way, ontological elements, such as con-
cepts and relations, are extracted from different resources. Some
researchers, such as Alfaries [1], examine existing techniques and
tools available for (semi-)automatically learning domain ontologies
from Web service resources.

Although OL offers mechanisms to automate the ontology con-
struction process, it is important to reuse ontological elements from
existing ontologies. This allows further integrations and logic-based
reasoning to be performed by software agents. In this sense, ontol-
ogy matching techniques emerge to solve ontology heterogeneity
issues, identifying equivalence relations — usually expressed by
OWL equivalences — between different ontologies. Euzenat and

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

Automatic Semantic Enrichment of Data Services

Shvaiko [11] identify four basic techniques for ontology matching.
The name-based technique considers only the name of ontology
elements (e.g., labels of properties and classes). The structured-
based technique considers the structure of ontology elements (e.g.,
subclass relations). Semantic-based techniques, on the other hand,
usually leverage reasoner tasks so as to infer the equivalences be-
tween different ontologies. Finally, the extensional techniques use
the ontology instances in order to identify similar individuals and
thereby match classes and properties.

As data services provide information from data sources, exten-
sional matching techniques can be adapted to SOA in such way that
information can be added as instances of service ontology. Thus,
besides the construction of domain ontologies for data services, this
work is concerned with the extensional matching technique to find
out alignments between service ontologies and external ontologies,
focusing on their properties. Such alignments are often expressed
by the owl:equivalentProperty axiom [2].

3 SEMANTICALLY ENRICHING DATA
REPRESENTATIONS

This work focuses on dynamically enriching syntactic represen-
tations, provided by data services, with semantics. This goal is
achieved by associating concepts defined in domain ontologies
with representations provided by data services, in order to pro-
vide Linked Data. To this end, it is necessary to include a semantic
adapter in the data service in order to perform such associations
and create the new semantic representations. Figure 1 presents an
overview of the workflow for the data service semantic enrichment.
Firstly, a consumer sends a request to a data service. After pro-
cessing the request, the service sends to an Enricher a syntactic
representation of the response (serialized in XML or JSON, for ex-
ample). The Enricher extracts all elements from such representation
and constructs a domain ontology for the service, including classes,
data type and object properties, as well as identified equivalent
property links to external concepts.

The Enricher should output the domain ontology along with
semantic associations, a.k.a semantic mappings, between the syn-
tactic attributes from service representations and the new ontology
concepts. A semantic mapping (SM) can be defined as a 3-tuple
SM = {a,c,t}, where a is the attribute of a representation, c is the
concept represented in the ontology, and ¢ is its type (a class or
an object data/property). As an example, suppose that it is created
a datatype property c, where ¢ = "http://servicel-ontology#
name", for the attribute a = "name" of a certain representation.
The semantic mapping generated shall be SM = {"name", "http:

Representation
JSON, XML ..

T Requiest
Consumer ——» Data |
- T - Service ©

@)sON-LD {cq}

Figure 1: Schema of Semantic Enrichment of Data Service
Representations.

iiWAS ’17, December 4-6, 2017, Salzburg, Austria

Semantic Adaptey Semantic Adaptep

API

OntoGenesis API |

L 4

Services Repository |

Ontology | Representation
Builder | e sl
Parser

“L.XML, JSON, ete. _/

Properties Matcher| @
Index

Repotsitory

Engine

External Data Sources
and Heuristic Rules

Figure 2: OntoGenesis Architecture.

//servicel-ontology#name", "Datatype property"}. SMs are
useful for generating semantic representations for the data service.
In this way, according to the set of semantic mappings yielded
by the Enricher, the syntactic representation is automatically con-
verted to JSON-LD by a semantic adapter, which in turn is sent
back to the consumer.

As illustrated in Figure 1, the Semantic Adapter is a component
attached to a data service, which intercepts the responses and re-
turns JSON-LD representations to consumers. It can also be seen as
a connector responsible for the communication between the data
service and the Enricher. The next section presents a detailed dis-
cussion concerning the Semantic Adapter as well as the architecture
designed for the enricher.

4 ONTOGENESIS

This section presents OntoGenesis, an architecture for semantically
enriching data services representations. The OntoGenesis architec-
ture is divided in three major components, as depicted in Figure
2. The first one, the OntoGenesis Engine, is responsible for con-
structing an ontology for the data service and for yielding semantic
mappings in accordance with the syntactic attributes of the data
service representations. The second component, called OntoGene-
sis API, is a Web API which provides a communication interface
for accessing functionalities provided by the OntoGenesis Engine.
Finally, the Semantic Adapter is a lightweight library for assisting
data services in providing semantic representations by means of
the OntoGenesis API It is important to notice that both Engine and
API components act as the Enricher depicted in Figure 1.

4.1 OntoGenesis Engine

As shown in Figure 2, the OntoGenesis Engine comprises five main
components: Services Repository, Representation Manager, Ontology
Builder, Index Repository and Properties Matcher.

The Services Repository manages information about the regis-
tered data services. The information stored includes the service
name, its URI address, and the semantic features created by On-
toGenesis (i.e, the domain ontology and the semantic mappings).
Furthermore, this component assists in the operation of the other

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

iiWAS *17, December 4-6, 2017, Salzburg, Austria

components providing the necessary information about the data
services registered in OntoGenesis.

The Representation Manager aims at extracting the elements from
a data service representation, such as attributes and their values,
useful for the ontology construction process. To this end, it provides
a common abstraction to any data format, so that specific parsers
can be seamlessly encapsulated in this component, allowing the
OntoGenesis Engine to properly deal with different data formats,
such as JSON, XML, CSV, among others.

Since the results of the Representation Manager are used by
other components, format-specific details are discarded using the
common abstraction. We employ an object-inspired abstraction, in
which a representation consists of a set of objects, each consisting
of a map from attribute names to a set of attribute values. As for
attribute values, they are divided into object values (creating a tree
structure) and primitive values? (numbers, strings and booleans).

The Ontology Builder analyzes the syntactic elements extracted
in the Representation Manager to construct a domain ontology for
the service producing the data. If a domain ontology has already
been constructed from a previous representation sent by the ser-
vice, the Ontology Builder updates the domain ontology with the
new identified elements. Therefore, the ontology evolves as new
representations are provided to OntoGenesis by the data service.
Figure 3 depicts a sample of a primary OWL ontology in RDF/XML
(b) based on a given JSON representation (a). The values contained
in the JSON represent real data — published by the SSP/SP - of a
police report with information regarding a person involved (e.g., a
victim, witness or perpetrator).

The attribute names existing in the representation are mapped
to a property instance in the ontology. The type of this property is
determined as follows:

(1) owl:ObjectProperty if used exclusively with object values
of a representation (e.g., lines 6 and 11 of Figure 3 (a) and (b)
respectively);

(2) owl:DatatypeProperty if used exclusively with primitive
values (e.g., lines 7 and 20 of Figure 3 (a) and (b) respectively);

(3) only rdf:Property otherwise.

The URI of the property instance is determined by a simple con-
catenation of the attribute name with the ontology prefix, which is
defined in accordance with the service URI provided by the Services
Repository component.

Classes are generated from two sources. First, any
owl:0ObjectProperty instance p originates a new class C
(e.g., line 10 of Figure 3 (b)), as well as the triple (p rdfs:range
C) (line 13). Any property g extracted from object values of the
attribute name corresponding to p will also take the triple (g
rdfs:domain C) (lines 20-31). The second source is the name
of the endpoint from where the representation originated. Such
class R generated in this manner will be the rdfs:domain of all
properties that correspond to attribute names found in the root
objects of the representations sharing the same endpoint name (e.g,
line 15). The rationale for this is that, within a typical Web service,
endpoints (e.g., a resource method in JAX-RS®) will serve entities

4JSON arrays are considered as multiple values for the same attribute name, i.e. the
array ordering is discarded.
Shttps://jep.org/en/jsr/detail?id=339

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira

1 {

2 "PoliceReport": {

3 "reportID": "2015-10004-794",

4 "location": "Train Station ...",
5

6 "personInvolved": {
7 "name": "CARLOS ALBERTO DOS SANTOS",
8 "docID": "@15%%%%18",
9 "birthDate": "12-21-1966",
10 "nationality": "Brazilian",
11 "placeOfBirth": "Sao Paulo-SP",
12 "gender" : "Male",
13
14 3}
15 }
16 Y
(a)
1 <rdf:RDF
2 xmlns="http://example-service/ontology#"
3 xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
4 xmlns:owl="http://www.w3.0rg/2002/07/owl#"
5 xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
6 xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
7 xml:base="http://example-service/ontology">
8 <owl:Ontology rdf:about="http://example-service/ontology"/>
9 <owl:Class rdf:ID="PoliceReport"/>
10 <owl:Class rdf:ID="PersonInvolved"/>
11 <owl:ObjectProperty rdf:ID="hasPersonInvolved">
12 <rdfs:domain rdf:resource="#PoliceReport"/>
13 <rdfs:range rdf:resource="#PersonInvolved"/>
14 </owl:ObjectProperty>
15 <owl:DatatypeProperty rdf:ID="reportID">
16 <rdfs:domain rdf:resource="#PoliceReport"/>
17 <rdfs:range rdf:resource="xsd:string"/>
18 </owl:DatatypeProperty>
19 S
20 <owl:DatatypeProperty rdf:ID="name">
21 <rdfs:domain rdf:resource="#PersonInvolved"/>
22 <rdfs:range rdf:resource="xsd:string"/>
23 </owl:DatatypeProperty>
24 <owl:DatatypeProperty rdf:ID="docID">
25 <rdfs:domain rdf:resource="#PersonInvolved"/>
26 <rdfs:range rdf:resource="xsd:string"/>
27 </owl:DatatypeProperty>
28 <owl:DatatypeProperty rdf:ID="birthDate">
29 <rdfs:domain rdf:resource="#PersonInvolved"/>
30 <rdfs:range rdf:resource="xsd:date"/>
31 </owl:DatatypeProperty>

33 </rdf:RDF>

(b)

Figure 3: Sample of: (a) JSON representation of a Police
Report® and (b) Ontology built from such representation.

of the same type. Furthermore, such endpoint name can be inferred
by a tool automating registry and representation submission to
OntoGenesis.

In parallel with the ontology construction process, the Ontology
Builder also yields the Semantic Mappings (SM). For each ontology
property p of a type ¢t created in accordance with an attribute a of
the service representation, it generates the 3-tuple SM = {a, p, t},
useful for converting such representation to JSON-LD.

Despite the fact that the primary ontology produced by the
Ontology Builder supplies semantic concepts related to the data
provided by the service, such concepts are only known by the data
service. In order to allow richer integration with other existing
Semantic Web applications or services, it is necessary that the
constructed ontology reuses (or aligns to) concepts defined by well-
known and open ontologies/vocabularies. To this end, OntoGenesis
aims at finding out equivalent concepts (specifically properties)

®Representation attributes were translated from Portuguese to ease understanding.

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

Automatic Semantic Enrichment of Data Services

between the constructed ontology and external sources in order to
expand the ontology and thereafter afford further reasoning tasks.

The Index Repository component stores, in a key-value database,
indexes for literal data from external data sources and from the data
services for which OntoGenesis will construct ontologies. There
are two types of indexes. Data originated from services is kept in an
index with the form p — o, where p is an RDF predicate and o is the
lexical form of an observed literal value. This index is not efficient
for querying purposes, but allows efficient enumeration of o. Re-
garding the second type of index, used for external sources, a major
requirement is fast processing of similarity-based queries (SBQ) in
which, given a string w, a string s in the index with d(w,s) < nis
selected, where d is a text similarity function. In this paper, we con-
sider the Levenshtein distance with a threshold of 1 (df (w,s) < 1)
for the sake of simplicity.

To support querying the existence of s with dy (w,s) < n, the
second index is p — M, where M is a DFA (Deterministic Finite Au-
tomata). The language of M (L(M)) is the set of all tokens extracted
from some object o of some triple in the external RDF sources. For
such query, one simply needs to compute a Levenshtein automata
LEV,(w) and verify if £L(M) (" L(LEV,(w)) # 0. Since the inter-
section automaton concurrently executes the intersected automata,
such verification of empty intersection can be done directly without
the need to materialize LEV; (w) [24].

Heuristic rules are also employed as sources of information for
the alignment process. Such rules are patterns, that can be expressed
as regular expressions, bound to a property p. One simple example
of arule R is dbo:date — [0-91{4}-[0-91{2}-[0-91{2}. When
the terms of a property p; (from a data service) match, for instance,
with such R, then p; can be considered as an equivalent property
of dbo:date. Since the index for external sources consists of a DFA
M, instead of a tree, heuristic rules can be merged directly into M,
causing any string that matches a rule to be considered part of the
index.

The Properties Matcher is the core component of OntoGenesis
Engine and aims at properly matching the set of terms of each
property provided by a data service, with the set of terms of each
property existing in external data sources. The matching mecha-
nism is based on the overlapping of data existing among properties
in different datasets. In order to calculate the degree of overlapping
data between two properties and find out more accurate equivalent
properties, we define a strength value for each performed prop-
erty matching. We provide an equation to compute the equivalent
property strength for two properties p; and py as follows:

[Vp1 s Vol

Vol M

Strength(p1,p2) =

where Vpy is the set of terms provided by a data service pertaining
to a given property pi1, and Vps is the set of values of a property p
provided by an external source, or recognized by any heuristic rule
bound to p,. The intersection () uses a similarity-based algorithm
to check whether a term t; € Vpy is similar to a term t; € Vpy and
thereby can be considered as a co-occurrence. Besides Levenshtein,
other similarity measures could be used, possibly requiring a change
in the external sources index for efficient similarity-based query.

iiWAS ’17, December 4-6, 2017, Salzburg, Austria

Properties
geo:name service:prop1l | dbo:givenName

London p Joh.n « ”]ohn
« Chicago /4 Chris ¢%» Cris
g Brasilia | Mary 4 » Mary
= Vienna * Robert <«—» Robert
./ Virginia <“» Virginya <4 % Virginia
| .Washington * "> Washington . Richard

» Strength(service:propl, geo:name) ~ 0.33
Strength(service:prop1, dbo:givenName) ~ 0.83 4

Figure 4: Example of overlapping property values.

Based on the overlapping strength, we identify the degree of corre-
spondence between two properties, so the higher the overlapping
strength, the most likely that the properties are equivalent.

Figure 4 illustrates the equation (1) in a scenario with three prop-
erties. service:prop1 is a property from an ontology automatically
constructed for a data service, while the other two properties come
from external data sources. The rounded hatched rectangles rep-
resent Vp1 (g, <1 Vpz. Although geo:name has an intersection
with the generated property, we can observe that the strength of
this relation (0.33) is smaller than that between service:prop1 and
dbo: givenName (0.83). In view of that, we can define a threshold
for the strength so that property pairs without significant support
for their equivalence can be discarded.

Algorithm 1 presents the main steps for determining property
equivalences from comparing property values provided by data
services with external data sources. The procedure receives as input
the ontology O constructed for the data service; the indexes 7 and
I’ containing, respectively, data from service representations and
external sources; and the strength threshold represented by a. The
algorithm starts matching all properties from the data services with
properties obtained from external sources (lines 2-4). For each Py, P,
pair, the algorithm counts how many of the values enumerated in
Vp1 (line 3) are also present in Vp; (lines 5-10). This counting
employs the Levenshtein automata imitation technique [24] to
avoid the enumeration of Vp;, which in addition to the values of
I, includes the values that match possible heuristic rules bound to
p2. The strength is computed in line 11, in accordance to equation
(1). In what follows, a triple stating that P; and P, are equivalent is
created (1. 12) and it is added to the ontology if strength satisfies the
threshold «, or removed from the ontology otherwise (lines 14-16).

In order to improve efficiency, the implementation of the algo-
rithm in OntoGenesis Engine was done in such a way that the
strength result is stored in memory and updated to each new set of
values coming from the data service. Thus, it is not necessary to
recalculate the intersection of the whole set, but only of the new
terms received, to update the strength.

4.2 OntoGenesis API

The OntoGenesis API is a RESTful API meant to be accessible
for all data services that need to be semantically enriched. This
API exposes two main features: i) register the data service, and ii)
invoke the OntoGenesis Engine to semantically enrich received
representations from registered data services. It is worth noting
that OntoGenesis API is an intermediate layer of communication

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

iiWAS *17, December 4-6, 2017, Salzburg, Austria

Algorithm 1 Properties Matching

1: procedure MATCHPROPERTIES(O, 7, I, o)

2 for each P; € GETPROPERTIES(Z) do
3 Vp1 < GETVALUES(J, P1)

4 for each P, € GETPrOPERTIES(Z) do
5: Vpy < GETVALUES(Z ', Py)
6 overlap < 0

7 for each v € Vp; do

8 if v € Vp, then

9 overlap « overlap + 1

10: end if

11: end for

12: strength « %

13: equivProp « (P; owl:equivalentProperty Ps)
14: if strength > o then

15: add equivProp to O

16: else if equivProp € O then
17: remove equivProp from O
18: end if

19: end for

20: end for

21: end procedure

between services — through semantic adapters — and the main
components of the OntoGenesis Engine.

When a given consumer interacts with a registered service, the
latter sends the resource requested by the user to the OntoGenesis
APT for semantic enrichment. The OntoGenesis API invokes the On-
toGenesis Engine and returns to the data service its new ontology,
along with the semantic mappings. Therefore, legacy data services
that provide purely syntactic representations are able to register
with OntoGenesis and be dynamically enriched with semantic data.

The OntoGenesis API supports custom configurations, such as a
threshold, for the equivalent properties strength, and a representa-
tion buffer size. The former must be configured with values from 0
to 1 and it is used during execution of the properties matching algo-
rithm (Algorithm 1). The representation buffer size represents how
many data service representations will be sent to the OntoGenesis
Engine at the same time. When it is customized with a value greater
than one, representations from each service are stored in a buffer
before they are sent to the Engine. Thus, instead of forwarding
representations one by one, it sends a batch of representations to
the Engine in order to reduce the calls and therefore improve the
performance of the semantic enrichment process.

Finally, OntoGenesis API offers an interface that allows loading
new external data sources into the Index Repository. Accordingly,
users can send new datasets to be loaded, so that their content will
be considered at runtime by the Properties Matcher in forthcoming
service requests.

4.3 Semantic Adapter

The Semantic Adapter is a component that is attached to a data ser-
vice that wishes to provide semantically enriched representations.
As shown in Figure 1, it is responsible for the interaction between
the data service and the OntoGenesis API. In addition to being

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira

{ "@context": {
"PoliceReport": "http://example-service/ontology/PoliceReport",
"reportID": "http://example-service/ontology/reportID",

"personInvolved": "http://example-service/ontology/hasPersonInvolved",
"name": "http://example-service/ontology/name",

"docID": "http://example-service/ontology/docID",

"birthDate": "http://example-service/ontology/birthDate",
"nationality": "http://example-service/ontology/nationality",
"placeOfBirth": "http://example-service/ontology/place0fBirth",

,
"@id": "http://example-service/policeReport?reportID=2015-10004-794",
"@type": "PoliceReport",

Figure 5: Excerpt of a JSON-LD context

imported into the data service implementation, its only required
configuration is the URI of the OntoGenesis APL

By using this component, the service registration is performed
automatically when the attached service starts. In addition, the
Semantic Adapter intercepts all consumer requests coming to the
data service and transparently invokes the OntoGenesis API, that
delegates to the Engine the construction of a domain ontology
and semantic mappings. Based on these artifacts, a new semantic
representation serialized in JSON-LD is generated by the adapter
and returned to the service clients. Therefore, instead of responding
a syntactic representation, the data service is able to serve linked
data to its consumers.

The Semantic Adapter also takes into consideration the @id,
@type and @context syntax tokens [13] to create JSON-LD docu-
ments. The @id uniquely identifies the resource data that is being
described. The @type specifies the subject of the JSON-LD docu-
ment and the @context is used to map terms (usually a short word)
that expands to an URI - defined in the ontology. These terms are
kept the same as declared in the syntactic representation, so as to
have little impact on the document syntax. A key benefit of adopt-
ing this feature is to allow both semantic-capable and syntactic
consumers (i.e., those unable to process semantic data) to process
the new outputs of the data service, since the attribute labels do
not change. Figure 5 shows a sample of JSON-LD context mapping
the JSON representation and ontology illustrated in Figure 3.

We provide a non-intrusive implementation of the Semantic
Adapter for the JAX-RS specification. This implementation trans-
parently diverts responses with representations generated by the
data service to the OntoGenesis API, and replaces them with seman-
tically enriched ones. Moreover, the Semantic Adapter provides the
data service with an endpoint to share the constructed ontology in
accordance with its URI base. Semantic applications can thereby
retrieve this ontology and perform reasoning tasks.

5 EVALUATION

In this section we describe the scenario in which the evaluation
was performed, the experimental methodology and the obtained
results. The aim of this evaluation is to show the applicability of
OntoGenesis and measure its performance using real world data.
Therefore, we analyze the recall, precision and F-measure obtained
by the proposed algorithm. In the end, we briefly describe a test
performed with two ontology matchers in order to compare them
with our properties matching approach.

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

Automatic Semantic Enrichment of Data Services

Table 1: Experimental results for DBpedia subset size.

Subset Total Time Highest
Size Mean with CI' | F-Measures Mean
20% 103.84 + 5.70 ms 0.7097
40% 121.25 = 7.30 ms 0.7503
60% 154.86 + 12.99 ms 0.6542

" CI = 95% Confidence Interval

5.1 Scenario

The scenario is based on open government data published by SSP/SP,
which discloses police reports in a non-structured format. Two
categories of reports were selected: "intentional homicide" and "sus-
picious death", due to the large attention given to these types of
crime/death. The police report provides information on those in-
volved (victims and perpetrators), such as name, document number,
birth date, nationality, place of birth, gender, among others. In spite
of being a substantial initiative of information transparency to so-
ciety, SSP/SP does not publish information in a suitable format to
be integrated and reused by other data sources or even analyzed by
researchers. In order to enrich this information, we have deployed
a data service that provides non-semantic data of those who have
been involved in any police report filed in the year of 2015.

As external data sources of OntoGenesis, we have used subsets
of both DBpedia and Geonames. DBpedia is a huge cross-domain
database that offers diverse Linked Data extracted from information
boxes in Wikipedia pages. Geonames is a geographical database
containing more than 160 million RDF triples available on the Web,
and also comprises a vocabulary for representing information on
places, such as latitude, longitude, name, etc. A pair of subsets of
Geonames was utilized due to their potential for data intersection:
Places in Brazil and Country names. In addition, we have selected
the DBpedia-Person dataset, which provides more than 8 million
triples representing attributes of a person, such as name, birth date,
birth place, among others.

5.2 Methodology

The deployed data service provides OntoGenesis with JSON repre-
sentations that may contain up to ten attributes of a person. Nine
of these attributes have equivalent properties in external sources
and only one has no correspondences. Therefore, this one must
have a datatype property in the ontology, but with no equivalent
property. It is worth mentioning that all representation attributes
provided by the data service were labeled in Portuguese, literally
as in the data source, whereas the properties of external sources
remained in English.

We analyzed the behavior of our approach setting three differ-
ent values for the threshold of equivalent properties strength: 0.4,
0.6 and 0.8. For experimental purposes, we have configured the
representation size buffer to 1, that is, OntoGenesis will process
each request at a time. When it receives a representation from the
data service, OntoGenesis extracts all values, checks overlapping
of terms with external sources and, finally, updates the data ser-
vice ontology with new properties and equivalent properties, in
accordance with the configured strength threshold.

iiWAS ’17, December 4-6, 2017, Salzburg, Austria

Table 2: Experimental results with 95% Confidence Interval.

o SM and Ontology Properties JSON-LD
Construction Matching Generation
0.4 19.10 + 1.17 ms 19.57 = 2.48 ms | 3.57 = 0.32 ms
0.6 17.98 + 0.97 ms 18.05 + 1.42 ms | 3.39 + 0.26 ms
0.8 19.58 + 1.08 ms 21.22 + 1.75ms | 4.23 £ 0.35ms

*a = Strength threshold

The experiments were performed using random person data,
with 7 rounds of 100 requests sent by the data service to OntoGe-
nesis for each of the thresholds. All experiments were performed
on an Intel i7 processor running at 2.5GHz, equipped with 8GiB of
memory, using Oracle Java Development Kit (JDK) 8 and Apache
Jena 3.3.0 for RDF and ontology processing. In order to allow the
replication of experiments, source code and instructions for set-
ting up the evaluation as well as all the results gathered in the
experiments are available in a public repository”.

5.3 Subset Size

Although the person subset of DBpedia was entirely loaded into the
Index Repository, its huge size can significantly impact on memory
consumption, since its dump file comprises more than 1GB. Aiming
at finding out an appropriate subset size for evaluation purpose,
we have performed a previous experiment using the 20%, 40% and
60% most frequent terms on DBpedia. Four execution rounds of 100
requests have been done for each size using the same configurations
detailed in section 5.2 with the strength threshold set to 0.8.

Table 1 shows the average processing time observed by the data
service for each request, along with their confidence intervals; and
the mean of the highest F-Measures (within the 100 requests) com-
puted for each execution. Results show that a larger subset size has
little impact on processing times. Moreover, no significant differ-
ence was observed among the F-Measures computed for each subset
size, varying nearly 0.1 or less. However, since more false positives
were found in the largest subset, one inaccurate equivalent property
was defined, which led to a slight decrease of F-Measure with a sub-
set size of 60%. In view of that, and in order to maintain a suitable
subset size and high F-Measure, 40% of the most frequent terms of
DBpedia have been used to perform the following experiments.

5.4 Threshold Comparison

Table 2 presents the mean processing time for the semantic map-
pings (S M) and ontology construction; properties matching pro-
cess; and JSON-LD generation, along with their confidence interval
for each request and considering the 7 rounds of execution. One
can notice that there is no significant alteration in execution time
between the adopted thresholds. Additionally, the processing time
is independent of the number of requests, since previous requests
are not reprocessed, but only the strength of equivalent properties
is recalculated.

Figure 6 shows the average of precision and recall per request,
considering the 7 rounds of execution and their confidence interval

"https://github.com/brunocnoliveira/iiwas2017-ontogenesis-experiments

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

iiWAS *17, December 4-6, 2017, Salzburg, Austria

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira

0.9

08 f

0.8

0.7 0.7

0.6 0.6

05 0.5

0.4 0.4

03 { "N SsENe= 03

95% Conf. Limits
95% Conf. Limits
95% Conf. Limits

Precision / Recall / F-Measure
Precision / Recall / F-Measure

95% Conf. Limits
95% Conf. Limits
~———F-Measure

95% Cont. Limits
e Recall

0.2

0.1

=~ = =Precision ~———F-Measure

95% Conf. Limits
95% Conf. Limits

Precision / Recall / F-Measure

95% Conf. Limits
ceocreeRecall

cooeenRecall
——F-Measure
= = =Precision

= = = Precision

0.0

30 40 50 60 70 80 9 100 30 a0 50

Number of Requests

(@) (b)

Figure 6: Precision, Recall and F-Measure curves for strength threshold (a) a = 0.4;

in the shadowed area surrounding the lines. It also depicts the F-
measure (or F; score), representing the harmonic mean of precision
and recall. Figure 6 (a) shows that in the scenario with a strength
threshold of 0.4, the recall is kept stable, reaching almost 0.9 after 20
requests, while the precision slightly decreases to 0.3. In the second
scenario, with a threshold of 0.6 (Figure 6 (b)), the recall increases
before executing 10 requests, while the precision slightly increases,
reaching almost 0.4. On the other hand, in the scenario with a
threshold of 0.8 (Figure 6 (c)), the precision reaches nearly 0.6, with
recall and F-Measure of approximately 0.85 and 0.7, respectively.
In all scenarios, after some time, OntoGenesis was capable
of enriching, with equivalent properties, 8 out of 9 properties
that could be enriched (approx. 0.89 of recall). In addition, it
has also found false positive equivalent properties for the same
datatype property. The reason behind this is that there are few
different properties sharing the same frequent terms. For instance,
pessoa:nome (a property of the data service ontology that repre-
sents a person’s name) has correspondences with dbpedia:name,
dbpedia: surname and dbpedia: givenName. Nevertheless, we con-
sider only dbpedia:name as the correct match. In the same way,
pessoa:naturalidade (a property of the data service ontology re-
lated to the place of birth) has correspondences with dbpedia: name
and geo: name, since there are several places in Brazil that are named
after a person. These situations can be dealt with increasing the
strength threshold. The higher the threshold, the higher is the pre-
cision. Nonetheless, we must pass a balanced value to maintain a
suitable recall score, otherwise, the recall tends to decrease. Both
recall and precision are also related to the overlapping of data ex-
isting between service representations and external sources. In the
first requests in scenario with threshold o = 0.8, we observed a
slight decrease in the recall, since many property values of service
did not match those of DBpedia nor Geonames, which leads to a
strength < a. Therefore, in scenarios with higher thresholds, the
strength tends to balance as new values are passed to each request.
Overall, the evaluation results are promising and show that Onto-
Genesis can gradually enrich data services with semantics, optimiz-
ing the reuse of well-known defined concepts from external data
sources. For instance, for life sciences data-services, it is possible
to combine specific resources from this domain, such as DrugBank

Number of Requests

60 70 80 90 100 a0

Number of Requests

(©

(b) « =0.6; and (c) « =0.8.

[29] and Bio2RDF [3]; or even use the ScholarlyData® dataset for
academic services.

5.5 Other Ontology Matchers

Extensional-based techniques can be adapted for service enrich-
ment [23] and, similarly to OntoGenesis, exploit instance data to
find ontology alignments. They rely on individuals obtained from
data services and from external sources to check if they have some
intersecting properties, i.e., properties with matching identifiers or
with values in the same domain. This correference or value sharing
among properties is used to infer property and class equivalences
among different ontologies.

Firstly, we converted our scenario from service semantic en-
richment to ontology alignment. The goal is to align the ontology
constructed by OntoGenesis (without alignments) against DBpedia
ontology, FOAF and Geonames. To this end, two files are generated.
The first contains the constructed ontology along with 1021 person
instances described in this ontology. The second file contains ex-
ternal ontologies and all instances from the external datasets. We
evaluated two extensional matchers, PARIS [25] and AROMA [10],
executing 7 rounds in each test. Nevertheless, none were able to
produce property alignments. The results were also not favorable
performance-wise: on average, AROMA took almost 18 minutes,
PARIS took 1 minute 45 seconds and OntoGenesis took only 39
seconds. Figure 7 shows the processing time for both extensional
matchers in comparison with OntoGenesis.

The challenge to these otherwise successful ontology matchers is
in the absence of correferent and data sharing between the service
data and the external data. For instance, we observed that the only
complete literal shared between the two service data and external
data is “PRETA”’. Extending the comparison to Levenshtein with
threshold 1, there are 2,324 (0.20%) subjects in the external data
that share a single literal value with the service data. However, no
such subject shares the value of more than one property with a
counterpart in the service dataset, which becomes a challenge for
extensional matchers that are based on the similarity of individuals.

8 Available at: http://www.scholarlydata.org/
?Meaning black skin color in Portuguese and also a place in the GeoNames dataset
(http://www.geonames.org/3391216)

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

Automatic Semantic Enrichment of Data Services

AROMA

PARIS

OntoGenesis

0 2 4 6 8 10 12 14 16 18 20
Time (min)

Figure 7: Processing Time Comparison.

6 RELATED WORK

The related work is divided into two major categories. The first
category discusses researches on data-based ontology construction
and ontology matching approaches. The second category concerns
proposals related to the semantic enrichment of services.

Euzenat and Shvaiko [11] identify 4 groups of ontology match-
ing approaches, each with specific challenges in the scenario of
semantic enrichment of services. Name-based techniques require
ontology elements to be labeled in the same language (which was
not the case for the scenario in section 5) and to have elements with
similar names. Semantic and structure-based techniques analyze
ontology features, e.g., the class hierarchy and relations between
classes. Thus, OntoGenesis constructs ontologies with a flat class hi-
erarchy (without subclasses) and the only relations between classes
occur through domains and ranges of properties. Finally, although
extensional-based techniques can be adapted for service enrich-
ment [23], such techniques present poor performance (as shown in
section 5.5) when data obtained through the service interface is un-
related to data from the external sources and when individuals are
not the same. In light of such evidence, we argue that extensional
ontology matching algorithms present distinct characteristics from
the problem we tackle, specifically property matches.

On the other hand, there are few efforts focusing on match-
ing properties in ontologies. Tran et al. [28] introduce a cluster-
based similarity aggregation methodology for ontology matching
in which they rely on four different similarity measures to align
object properties based on their domains and ranges. The authors,
however, mention that the evaluation results are not strong enough
to distinguish matching and non-matching property names. Zapilko
et al. [31] identifies the exact relationship between two objects in
large scale linked data, using governmental data. Their goal is to
align instances of ontologies separately and to compute the overlap
between them in order to improve the matching of object properties.
Additionally, the overlap scores use some variations of the Jaccard
coefficient. A drawback in the aforementioned approaches is that
they are limited to object properties. On the other hand, Nunes et al.
[20] use genetic algorithms for complex datatype properties match-
ing. However, their approach also differs from ours in the sense
that its goal is the matching of one to many complex relationships
in different ontologies. In other words, the authors are interested
in mapping properties that are composed of other properties (e.g.,
mapping “first name” and “last name” to “full name”).

Several approaches [7, 9, 19, 22] have been designed aiming to
support users in the ontology construction process. However, they

iiWAS ’17, December 4-6, 2017, Salzburg, Austria

all suffer from some shortcoming. First, most of them depend either
on very specific or proprietary ontology models, which hinders its
wide applicability. Second, they are not fully automatic approaches,
since they all assist expert domain users. Finally, traditional ontol-
ogy construction methods commonly require as input a huge set
of unstructured text or Web page data [19], differently from our
approach, in which data is provided on demand by services.

Yao et al. [30] introduce a framework for transforming semi-
structured Web documents - specifically a set of JSON representa-
tions provided by Web services — into a unified ontology. Firstly, the
framework parses the JSON and yields RDF triple sets. Meanwhile,
multiple independent ontologies are created based on the triple
sets and, afterwards, an ontology merging process is performed to
achieve one unified ontology model. The resulting ontology must
be validated by domain expert users, who can validate and edit
the final ontology. Although it demonstrates to be a relevant study
related to ontology construction based on JSON documents, the
authors do not tackle the automatic semantic enrichment of Web
services. Furthermore, the framework only considers JSON as input
and outputs a single ontology, while our approach can support
different representation formats and derive one domain ontology
for each data service. Moreover, we propose a property matching
technique in order to optimize the reuse of concepts defined in
external resources, whilst they do not use any external source to
enhance the constructed ontologies. The paper does not provide
the data used in experiments, but based on the presented results
we infer that their approach, in the best case, is able to process
2,038 triples/sec. In contrast, OntoGenesis processed approximately
96,300 triples/sec in the scenario described in section 5.

Many researchers have been directing efforts towards automatic/-
semi-automatic semantic enrichment of Web services [27]. These
works can be divided into two subgroups: service description and
service representation enrichment. The first concentrates on adding
semantic information to describe services interfaces, while the
second aims at enriching service representations with semantic
features. Little attention is given to the later group. Most of the
proposals found in the literature are interested in enhancing service
descriptions with semantics, such as SDWS [6], SWS Editor [14] and
ASSARS [16]. In particular to data services, Quarteroni et al. [21]
propose a semi-automatic service registration process exploiting
existing knowledge bases as well as text processing techniques for
semantic annotation and integration of Web data services.

Salvadori et al. [23] propose a composition method that exploits
the potential data intersection observed in data-based microservice
descriptions in order to create links between semantic resources.
The representations provided by microservices are therefore en-
riched with owl:sameAs and rdfs: seeAlso links. Complementar-
ily, the authors propose a framework called Alignator, which adopts
ontology matching techniques to identify alignments between het-
erogeneous ontologies that describe microservices. However, this
approach only considers services that i) already employ a previ-
ously defined domain ontology and ii) provide Linked Data repre-
sentations as well as semantic descriptions. Therefore, syntactic
representations are not supported by this framework.

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

iiWAS *17, December 4-6, 2017, Salzburg, Austria

7 CONCLUSIONS AND FUTURE WORK

In general, data services often provide their data in a (semi-) struc-
tured form, but without explicit semantics. Semantic Web technolo-
gies allow machine-readable descriptions of data, that ultimately
improve reusability and interoperability of data services. This paper
presented OntoGenesis, an architecture that aims at constructing
domain ontologies for the data provided by data services. Addi-
tionally, OntoGenesis improves the constructed ontology through
a property matching mechanism which reuses well-known con-
cepts used in external sources. Finally, an adapter plugged into
the service transparently enriches the output representation with
semantic concepts defined in the domain ontology. Current ap-
proaches for semantic enrichment of service focus on generating
semantic service descriptions and do not cover automatic semantic
enrichment of the data provided by a service. Moreover, approaches
for similar problems, such as ontology construction and ontology
alignment, in general, do not apply to the scenario where data
instance information is provided only through a service interface.

Results show the equivalence strength between properties of the
constructed ontology and the external data sources. The precision is
tightly related to the strength threshold, so better F-Measure scores
are achieved when the threshold is increased (e.g., a threshold of
0.8 yielded around 0.7 of F-measure). In some cases, however, we
observed that similar values may also lead to wrong matches. For
instance, a person’s surname could match with a place name.

Comparing with extensional ontology matchers, OntoGenesis
presents better time performance (between 2 and 18 times faster)
and is able to find equivalences in scenarios where such aligners
would not, even if given a dump of the service data. In comparison
with an ontology construction approach [30], OntoGenesis was
47 times faster in terms of triples/sec. Overall, the experiments
show that our proposal is a promising approach that can boost the
provisioning of richer data by service providers, reducing the efforts
involved in the whole process of developing semantic services.

In future work we intend to consider, in the strength equation,
the frequency of each term in the data service and in the exter-
nal data sources so as to minimize false positives. We are also
working on a mechanism to identify class equivalence, in addition
to the equivalent properties. Besides JSON-LD, a mechanism to
provide XML semantically annotated could also be included for
compatibility with XML consumers. Furthermore, machine learning
techniques can be applied to recognize patterns of property values
in order to dynamically yield new heuristic rules.

REFERENCES

[1] Auhood Alfaries. 2010. Ontology Learning for Semantic Web Services. Ph.D.
Dissertation. Brunel University London. http://dspace.brunel.ac.uk/handle/2438/
4667

[2] Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L
McGuinness, Peter F Patel-Schneider, and Lynn Andrea Stein. 2004. OWL Web
Ontology Language Reference. W3C Recommendation 10 (2004). http://www.w3.
org/TR/owl-ref/

[3] Francois Belleau, Nicole Tourigny, Benjamin Good, and Jean Morissette. 2008.
Bio2RDF : A Semantic Web Atlas of Post Genomic Knowledge about Human and
Mouse. Springer Berlin Heidelberg, Berlin, Heidelberg, 153-160.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The Semantic Web.
Scientific American 284, 5 (2001), 34-43.

[5] Devis Bianchini, Valeria De Antonellis, and Michele Melchiori. 2015. Developers’
Networks Contribution to Web Application Design. In Proceedings of the 17th
International Conference on Information Integration and Web-based Applications &

Bruno C. N. Oliveira, Alexis Huf, Ivan Salvadori, and Frank Siqueira

Services (iiWAS ’15). ACM, New York, NY, USA, 55:1-55:10.

Maricela Bravo, José Rodriguez, and Jorge Pascual. 2014. SDWS: Semantic De-
scription of Web Services. International Journal of Web Services Research 11, 2
(2014), 1-23.

[7] P. Buitelaar, D. Olejnik, and M. Sintek. 2004. A Protégé Plug-in for Ontology
Extraction from Text Based on Linguistic Analysis. In Proceedings of the 1st
European Semantic Web Symposium. Springer, Berlin, Germany, 31-44.

[8] Michael J Carey, Nicola Onose, and Michalis Petropoulos. 2012. Data Services.
Communications of the ACM 55, 6 (jun 2012), 86.

[9] Philipp Cimiano and Johanna Vélker. 2005. Text20Onto: A Framework for On-
tology Learning and Data-driven Change Discovery. In Proceedings of the 10th
International Conference on Natural Language Processing and Information Systems
(NLDB’05). Springer-Verlag, Berlin, Heidelberg, 227-238.

[10] Jérome David. 2007. Association Rule Ontology Matching Approach. Int. Journal
on Semantic Web and Information Systems 3, 2 (2007), 27-49.
[11] Jérome Euzenat and Pavel Shvaiko. 2007. Ontology Matching. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.
Aissa Fellah, Mimoun Malki, and Atilla El¢i. 2016. Web Services Matchmaking
Based on a Partial Ontology Alignment. Int. Journal of Information Technology
and Computer Science (IFITCS) 8, 6 (June 2016), 9-20.
Markus Lanthaler, Manu Sporny, and Gregg Kellogg. 2014. JSON-LD 1.0. W3C
Recommendation. W3C. http://www.w3.org/TR/2014/REC-json-1d-20140116/.
Cleber Lira and Paulo Caetano. 2016. REST-Based Semantic Annotation of Web
Services. In Information Technology: New Generations, Vol. 448. Springer, 269-279.
Hermano Albuquerque Lira, Jose Renato Villela Dantas, Bruno de Azevedo Muniz,
Laura Maria Chaves, and Pedro Porfirio Muniz Farias. 2014. Semantic Data Ser-
vices: An approach to access and manipulate Linked Data. In XL Latin American

Computing Conference (CLEI). IEEE, 1-12.

Chengduo C.a Luo, Zibin ¢ Zheng, Xiaorui X.d Wu, F.d Fei Yang, and Yao Y.a
Zhao. 2016. Automated structural semantic annotation for RESTful services.
International Journal of Web and Grid Services 12, 1 (2016), 26-41.

Alexander Maedche and Steffen Staab. 2001. Ontology Learning for the Semantic
Web. IEEE Intelligent Systems 16, 2 (March 2001), 8.

Sheila A. Mcllraith, Tran Cao Son, and Honglei Zeng. 2001. Semantic Web
Services. IEEE Intelligent Systems 16, 2 (2001), 46-53.

Thi Thanh Sang Nguyen and Haiyan Lu. 2016. Domain Ontology Construction
Using Web Usage Data. In AI 2016: Advances in Artificial Intelligence. Springer
International Publishing, 338-344.

Bernardo Pereira Nunes, Alexander Mera, Marco Antdnio Casanova, Besnik
Fetahu, Luiz André P. Paes Leme, and Stefan Dietze. 2013. Complex Matching of
RDF Datatype Properties. Springer Berlin Heidelberg, Berlin, Heidelberg, 195-208.
Silvia Quarteroni, Marco Brambilla, and Stefano Ceri. 2013. A bottom-up,
knowledge-aware approach to integrating and querying web data services. ACM

Transactions on the Web 7, 4 (2013), 19:1-19:33.

Sara Salem and Samir AbdelRahman. 2010. A Multiple-domain Ontology Builder.
In Proceedings of the 23rd International Conference on Computational Linguistics.
Association for Computational Linguistics, Stroudsburg, USA, 967-975.

Ivan Luiz Salvadori, Alexis Huf, Bruno C. N. Oliveira, Ronaldo Santos Mello, and
Frank Siqueira. 2017. Improving Entity Linking with Ontology Alignment for
Semantic Microservices Composition. International Journal of Web Information

Systems 13 (2017). Issue 3.

Klaus U Schulz and Stoyan Mihov. 2002. Fast string correction with Levenshtein
automata. Int. Journal on Document Analysis and Recognition 5, 1 (2002), 67-85.
Fabian M Suchanek, Serge Abiteboul, and Pierre Senellart. 2011. Paris: Proba-
bilistic alignment of relations, instances, and schema. Proceedings of the VLDB
Endowment 5, 3 (2011), 157-168.

Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan.

2003. Automated Discovery, Interaction and Composition of Semantic Web

Services. Web Semantics: Science, Services and Agents on the World Wide Web 1, 1
(2003), 27.

Davide Tosi and Sandro Morasca. 2015. Supporting the semi-automatic semantic
annotation of web services: A systematic literature review. Information and

Software Technology 61 (may 2015), 16-32.

Quang-Vinh Tran, Ryutaro Ichise, and Bao-Quoc Ho. 2011. Cluster-based Simi-
larity Aggregation for Ontology Matching. In Proceedings of the 6th International

Conference on Ontology Matching - Volume 814 (OM’11). CEUR-WS.org, Aachen,

Germany, 142-147.

David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan
Tzur, Bijaya Gautam, and Murtaza Hassanali. 2008. DrugBank: A knowledge
base for drugs, drug actions and drug targets. Nucleic Acids Research 36 (2008),
D901-D906.

Yuangang Yao, Hui Liu, Jin Yi, Haigiang Chen, Xianghui Zhao, and Xiaoyu Ma.

2014. An automatic semantic extraction method for web data interchange. 2014

6th Int. Conf. on Computer Science and Information Technology (2014), 148-152.

Benjamin Zapilko and Brigitte Mathiak. 2014. Object Property Matching Utilizing
the Overlap between Imported Ontologies. Springer International Publishing,
737-751.

—_
2

[12

(13

[14

[15

[16

[17

(18

[19

[20

o
=

[22

[23

[24

™~
2

[26

[27

[28

™
20,

[30

(31

© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: |10.1145/3151759.3151783

https://doi.org/10.1145/3151759.3151783

