
OntoGenesis: An Architecture for
Automatic Semantic Enhancement of Data
Services

© 2018 Emerald Publishing. This document is the accepted for publication version of the article published by Emerald. It includes
changes suggested by reviewers, but is not formatted nor editted as per the journal standards. This document is licensed under the
Creative Commons Attribution-NonCommercial 4.0 International License.
DOI: 10.1108/IJWIS-04-2018-0020
Published in: International Journal of Web Information Systems Volume 15, Issue 1 pp. 2-27, ISSN: 1744-0084

Bruno C. N. Oliveira1, Alexis Huf1, Ivan Salvadori1, and Frank Siqueira1

1Graduate Program in Computer Science (PPGCC), Department of Informatics and
Statistics (INE), Federal University of Santa Catarina (UFSC), Florianópolis/SC, Brazil

Corresponding author: Bruno C. N. Oliveira1

Email address: brunocn.oliveira@gmail.com

https://doi.org/10.1108/IJWIS-04-2018-0020
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1108/IJWIS-04-2018-0020
https://www.emeraldinsight.com/loi/ijwis

ABSTRACT

Purpose – This paper describes a software architecture that automatically adds semantic capabilities
to data services. The proposed architecture, called OntoGenesis, is able to semantically enrich data
services, so that they can dynamically provide both semantic descriptions and data representations.
Design/methodology/approach – The enrichment approach is designed to intercept the requests from
data services. Therefore, a domain ontology is constructed and evolved in accordance with the syntactic
representations provided by such services in order to define the data concepts. In addition, a property
matching mechanism is proposed to exploit the potential data intersection observed in data service
representations and external data sources so as to enhance the domain ontology with new equivalences
triples. Finally, the enrichment approach is capable of deriving on demand a semantic description and
data representations that link to the domain ontology concepts.
Findings – Experiments were performed using real-world datasets, such as DBpedia, GeoNames as
well as open government data. The obtained results show the applicability of the proposed architecture
and that it can boost the development of semantic data services. Moreover, the matching approach
achieved better performance when compared with other existing approaches found in the literature.
Research limitations/implications – This work only considers services designed as data providers, i.e.,
services that provide an interface for accessing data sources. In addition, our approach assumes that
both data services and external sources – used to enhance the domain ontology – have some potential
of data intersection. Such assumption only requires that services and external sources share particular
property values.
Originality/value – Unlike most of the approaches found in the literature, the architecture proposed in
this paper is meant to semantically enrich data services in such way that human intervention is minimal.
Furthermore, an automata-based index is also presented as a novel method that significantly improves
the performance of the property matching mechanism.
Keywords – Data Service, Semantic Web Service, Semantic Web, Ontology Alignment, Ontology
Construction, Property Matching, Service Description, Semantic Representation
Paper type – Research paper

© 2018 Emerald Publishing. This document is the accepted for publication version of the article published by Emerald. It includes
changes suggested by reviewers, but is not formatted nor editted as per the journal standards. This document is licensed under the
Creative Commons Attribution-NonCommercial 4.0 International License.
DOI: 10.1108/IJWIS-04-2018-0020
Published in: International Journal of Web Information Systems Volume 15, Issue 1 pp. 2-27, ISSN: 1744-0084

https://doi.org/10.1108/IJWIS-04-2018-0020
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1108/IJWIS-04-2018-0020
https://www.emeraldinsight.com/loi/ijwis

1 INTRODUCTION

The number of Web services, scattered in public and private networks, that are meant to provide data
already stored in some data source has been constantly increasing. Such Web services are also referred to
as data services and are useful for providing access interfaces to data sources that cannot be completely
disclosed (Carey et al., 2012). Additionally, such services can also employ Semantic Web technologies
(Berners-Lee et al., 2001) in order to provide data in a sophisticated machine-readable format and,
therefore, be easily reused by third parties and integrated to complex Web applications. Several researchers
have been discussing the benefits of employing Semantic Web services; for instance, enhance data
interoperability (Salvadori et al., 2017) and assist in automating tasks such as service discovery, selection,
composition, etc. (McIlraith et al., 2001; Sycara et al., 2003).

However, the implementation and adoption of Semantic data services in real-world applications are
limited mainly due to the format of stored data. Such data is usually stored in a syntactic form, i.e.,
only the structure of the data is specified, but not the semantics. In addition, various major challenges
contribute to this lack of adoption. Some common issues include the time and effort demanded in the
construction of domain ontologies and the semantic annotation of data services. These are complex tasks
that require domain expert knowledge. Concerns over agreement in semantic modeling must also be
taken into account. In practice, assuming that data provided by services will always be defined by a
universal ontology is not realistic (Fellah et al., 2016). As a result, given the existing heterogeneous
ontologies describing the same real-world entity, developing and integrating Semantic data services
become challenging tasks.

Since building an ontology for a data source is a difficult and time consuming task by its nature, some
support tools (Cimiano and Völker, 2005; Salem and AbdelRahman, 2010; Nguyen and Lu, 2016) have
been developed to help users in the ontology construction process. These tools, though, often require
availability of data dumps for generating a domain ontology. This limitation hinders the adoption of
such tools in Service-Oriented Architecture (SOA), in which availability of data depends on the service
interface. Extensional ontology matching techniques (Euzenat and Shvaiko, 2007) attempt to solve the
problem of ontology heterogeneity using instance data to infer equivalences at the schema level. On
the other hand, data services are susceptible to changes, and ontologies that describe data are required
to evolve in parallel, otherwise they become inconsistent. Moreover, in order to perform extensional
matching, ontology matchers generally assume that the two ontologies that are to be matched have already
been created and associated with a large set of instances. This becomes a challenge when such data is
partially available (due to the service interface) and when instance data of both ontologies are unrelated.
Yao et al. (2014) proposed a mechanism to create a unified ontology based on a set of JSON documents
provided by a Web service. Nevertheless, the generated ontology does not leverage semantic concepts
defined by external sources, aiming to reuse existing concepts and minimize heterogeneity issues. In
addition, previous works have proposed approaches to enrich services with semantics, most of them
focusing on service descriptions (Bravo et al., 2014; Luo et al., 2016). In contrast, few proposals address
the enrichment of data provided by services. For instance, the method proposed by Salvadori et al. (2017)
aims to enrich representations of data-based microservices with owl:sameAs and rdfs:seeAlso
links. A framework aimed to identify alignments between heterogeneous ontologies is also proposed. A
drawback of such approach is that microservices must already employ a domain ontology and provide
semantic data.

This work proposes an architecture, called OntoGenesis, aimed to generate domain ontologies and
automatically enriching data services with semantic concepts defined in such ontologies. The benefits

3/27

of our proposal are two-fold. Firstly, OntoGenesis provides a way to gradually build domain ontologies
from syntactic representations provided by data services and to reuse well-known concepts by identifying
data intersection with external sources. Secondly, the architecture enables the migration of syntactically
defined data services toward Semantic data services. Therefore, legacy data services are able to serve
both semantic description and representations to their consumers. This paper is an extended version of
(Oliveira et al., 2017), that includes the generation of semantic service descriptions, contains an expanded
exposition of the mechanism responsible for high performance results and provides further evaluations of
the architecture. Results show that our approach can achieve suitable F-Measure scores and reasonable
performance in terms of processing time and memory consumption.

The remainder of this paper is organized as follows: Section 2 summarizes the main concepts that
are required for understanding this work. Section 3 presents the semantic enrichment approach for data
services, while the OntoGenesis architecture and its main components are detailed in Section 4. Section
5 presents the evaluation scenario and methodology along with the obtained results. Related research
efforts found in the literature are discussed in Section 6. Finally, Section 7 draws the conclusions and
presents some perspectives for future work on this research subject.

2 BACKGROUND

2.1 Data Services
A Web data source is usually organized in accordance with a data model or schema, which can be unknown
to consumers who access data through a Web interface. In general, these data sources are wrapped as Web
Services, i.e., they expose data through one or more Web data services (hereafter, called data services or
just services) (Bianchini et al., 2015).

Data services aim to provide a Web interface for handling data in the sense that they act as data
providers, allowing abstraction of access to data sources. Bianchini et al. (2015) define a data service s as
an operation, method or query to access data from a given data source. These services are modeled as a set
of: i) service inputs si, which consist in parameters that are needed to invoke the service and access data;
and ii) outputs so, representing data that is accessed through service s. Data access is usually resource
(i.e., entity) oriented, that is, a consumer requests a resource to a service, providing si, and receives a
representation of such resource, so. The output representation can be seen as a snapshot of the state of
a resource at a given time, available in different formats, such as XML, JSON, HTML, etc. It is worth
noting that data services are not tied to any particular technology; they can be implemented, for example,
using SOAP or REST technology stacks.

A crucial factor that hinders service integration occurs in the conceptual level, since data services often
employ different terminologies (for the attribute names, for instance), even though providing information
about the same real-world concept. To overcome this issue, Semantic Web technologies (Berners-Lee
et al., 2001) may be applied to data services, resulting in Semantic data services. Such approach is aimed at
providing machine-readable descriptions of data, therefore facilitating its integration and reuse. According
to McIlraith et al. (2001), Semantic Web services should expose information about available services, their
properties, execution interfaces, pre- and post-conditions, in a sophisticated machine-readable format.
Regarding Semantic data services, managed resources, as well as their properties and relationships, should
also be semantically enriched. This means that, besides the service description, representations provided
by such services should be associated with semantic concepts.

On the other hand, Lira et al. (2014) consider Semantic data services as access points to data that is
natively stored as RDF (Resource Description Framework) triples in a particular data source. In contrast,

4/27

we argue that Semantic data services can provide both semantic description and semantic representations,
regardless of how data is stored and maintained. Thus, enriching data service representations means to
provide semantic data taking advantage of RDF formats, such as JSON-LD.

2.2 Ontology Construction and Matching
Ontologies aim to provide common vocabularies for different domains of knowledge. According to
Guarino (1997), ontologies can be classified based on two dimensions: level of detail and dependency
level. At the first level, a very detailed ontology aims to specify the meaning of a vocabulary in order to
establish a consensus about certain concepts, whilst in a scenario where users already have a consensus, a
simpler and less detailed ontology (operational) can be developed and shared, taking into account specific
operations of inference.

At the dependency level, ontologies can be classified in four types according to their generality level:
top-level, domain, task and application. Domain ontologies are the most common and are employed in
many application fields (Guizzardi, 2007). Since the use of ontologies in the present research is aimed
at the integration of data and the enrichment of services with semantic concepts related to a particular
application domain, the approach introduced in this work aims to build operational domain ontologies.
Therefore, most of the subsequent discussions apply to this type of ontology, although it may be extended,
with some restrictions, to other types.

Most effort involved in semantically enriching services is in the construction of ontologies as well
as in adapting and evolving them in accordance with demanded changes. This is due to the naturally
time-consuming task involved in the domain ontology development. In general, ontology engineers and
domain experts manually develop domain ontologies to provide a domain-specific model suitable for
describing the semantics of a service. Ontology Learning (OL) (Maedche and Staab, 2001) is a topic
interested in automating and thereby facilitating the creation of ontologies by domain experts and ontology
engineers. In this way, ontological elements, such as concepts and relations, are extracted from different
resources. Some researchers, such as Alfaries (2010), examine existing techniques and tools available for
(semi-)automatically learning domain ontologies from Web service resources.

Although OL offers mechanisms to automate the ontology construction process, it is essential to reuse
semantic concepts from existing ontologies. This allows further integrations and logic-based reasoning to
be performed by software agents. In this sense, ontology matching techniques emerge to solve ontology
heterogeneity issues by identifying alignments – usually expressed by OWL equivalences – between
different ontologies. To yield an alignment, the following inputs may be used in addition to the ontologies:
i) a known alignment A0, ii) matching parameters (such as weights or thresholds), and iii) external
resources. The alignment contains a set of correspondences between classes and properties of such
ontologies. Each correspondence denotes a relation of equivalence, generalization or disjointness between
two elements of O1 and O2 (Pavel and Euzenat, 2013).

Four basic techniques for ontology matching are identified by Euzenat and Shvaiko (2007). The
name-based technique considers only the name of ontology elements (e.g., labels of properties and
classes). The structured-based technique considers the structure of ontology elements (e.g., subclass
relations). Semantic-based techniques, on the other hand, usually leverage reasoner tasks in order to infer
equivalences between different ontologies. Lastly, the extensional techniques use the ontology instances
to identify similar individuals and thereby match classes and properties.

Extensional matching techniques can be adapted to SOA in such way that information provided by
data services can be added as instances of the service ontology. Thus, besides the construction of domain
ontologies for data services, this work is concerned with the extensional matching technique to find out

5/27

alignments between service ontologies and external ontologies, specifically focusing on their properties.
Such alignments are often expressed by the owl:equivalentProperty axiom.

3 SEMANTIC ENHANCEMENT OF DATA SERVICES

This work focuses on dynamically enhancing data services with semantic features, so as they can provide
both semantic description and semantic representations. This goal is achieved by associating semantic
concepts defined in domain ontologies with service representations provided by such service, in order to
provide Linked Data. To this end, it is necessary to include a semantic adapter in the data service aiming
to perform such associations and create the new semantic description and representations.

Figure 1 presents an overview of the workflow for the data service semantic enrichment. Firstly, a
consumer sends a request to a data service. After processing the request, the service sends to an Enricher a
syntactic representation of the response (serialized, for instance, in XML or JSON). The Enricher extracts
all elements from such representation and constructs a domain ontology for the service, including classes,
data type and object properties, as well as identified equivalent property links to external concepts. Such
equivalences can be found out by the Enricher through external data sources that link to existing semantic
concepts.

Consumer
Data

Service

S
em

an
tic

JSON, XML...

Ontology
+

Request

Representation E
n
ric
h
e
r

E
n
ric
h
e
r

Semantic
Mappings

E
x

te
rn

a
l S

o
u

r c
e

s

A
da

pt
er

Semantic Representation +
Semantic Description

Data
Source

1

2

3

4

5

Figure 1. Schema of Semantic Enrichment of a Data Service.

The Enricher should output the domain ontology along with semantic associations, known as Semantic
Mappings (SM), between the syntactic attributes from service representations and the new ontology
concepts. A semantic mapping can be defined as a 3-tuple SM = {a,c, t}, where a is the attribute of a rep-
resentation, c is the concept represented in the ontology, and t is its type (a class or an object data/property).
As an example, suppose that it is created a datatype property c, where c = "http://data-service/

ontology#name", for the attribute a = "name" of a certain representation. The semantic mapping
generated shall be SM = {"name", "http://data-service/ontology#name", "Datatype
property"}. Semantic Mappings are useful for generating semantic representations as well as a
semantic description for the data service. In this way, according to the set of semantic mappings yielded
by the Enricher, the syntactic representation is automatically converted to JSON-LD by a semantic adapter,
which in turn is sent back to the consumer. Likewise, a semantic description for the service is generated
according to the input and output parameters, and it is published though an endpoint so that consumers
can obtain it.

6/27

Services RepositoryServices Repository

Representation
Manager

Representation
Manager

E
xte

rn
al D

a
ta

 S
o

u
rce

s
an

d
 H

e
u

r istic R
u

l e
s

O
ntoG

e nesis A
P

I
O

ntoG
e nesis A

P
I

API Engine

Ontology
Builder

Ontology
Builder

Parser
XML, JSON, etc.

Properties MatcherProperties Matcher
Index

Repository

Semantic Adapter

Data Service

Mapping
Repository

Semantic
Description

HydraHydra

Domain
Ontology

Figure 2. OntoGenesis Architecture.

As shown in Figure 1, the Semantic Adapter is a component attached to a data service, which
intercepts the responses and returns JSON-LD to consumers. Such JSON-LD is used to serialize not
only the representations provided by the data service, but also the semantic description, which defines the
entities a service is able to manage and how to obtain them. The Semantic Adapter can also be seen as a
connector responsible for the communication between the data service and the Enricher. The next section
presents a detailed discussion concerning the Semantic Adapter as well as the other components designed
for the Enricher.

4 THE ONTOGENESIS ARCHITECTURE

This section presents OntoGenesis, an architecture for semantically enriching data services. The Onto-
Genesis architecture is divided in three major components, as depicted in Figure 2. The first one, the
OntoGenesis Engine, is responsible for constructing an ontology for the data service and for yielding
semantic mappings in accordance with the syntactic attributes of the data service representations. The
second component, called OntoGenesis API, is a Web API that provides a communication interface
for accessing functionalities provided by the OntoGenesis Engine. Finally, the Semantic Adapter is a
lightweight library for accessing the OntoGenesis API and for assisting the data service in providing its
semantic description and semantic representations. It is important to notice that the Enricher depicted in
Figure 1 comprises both the API and the Engine components shown in Figure 2.

4.1 OntoGenesis Engine
As shown in Figure 2, the OntoGenesis Engine comprises five main components: Services Repository,
Representation Manager, Ontology Builder, Index Repository and Properties Matcher.

The Services Repository manages information about the registered data services. The information
stored includes the service name, its URI address, and the semantic features created by OntoGenesis
(i.e, the domain ontology and the semantic mappings). Furthermore, this component assists in the
operation of the other components providing the necessary information about the data services registered
in OntoGenesis.

The Representation Manager aims to extract the elements from a data service representation, such as
attributes and their values, useful for the ontology construction process. To this end, it provides a common
abstraction to any data format, so that specific parsers can be seamlessly encapsulated in this component,
allowing the OntoGenesis Engine to properly deal with different data formats, such as JSON, XML, CSV,
among others. Since the results of the Representation Manager are used by other components, format-
specific details are discarded using the common abstraction. We employ an object-inspired abstraction, in

7/27

which a representation consists of a set of objects, each consisting of a map from attribute names to a set
of attribute values. As for attribute values, they are divided into object values (creating a tree structure)
and primitive values such as numbers, strings and booleans. JSON arrays are considered as multiple
values for the same attribute name, i.e., the array ordering is discarded.

The Ontology Builder analyzes the syntactic elements extracted by the Representation Manager to
construct a domain ontology for the service producing the data. If a domain ontology has already been
constructed from a previous representation sent by the service, the Ontology Builder updates the domain
ontology with the new identified elements. Therefore, the ontology evolves as new representations are
provided to OntoGenesis by the data service. The ontology construction process is further detailed in
section 4.1.1.

The Index Repository is a sub-component of the Engine that stores, in a key-value database, indexes
of literal data gathered from external data sources and data services for which OntoGenesis construct
ontologies. Considering that both service data and external data consist in triples, both indexes use property
as key and object as values. Only triples whose object is a literal have the lexical form of the object
(i.e., discarding the datatype) included in these indexes. Despite the aforementioned similarities, service
data and external data employ different index structures and procedures. The index for service data is
implemented as a simple hash-based map of properties to hash-based sets of values. This implementation
strategy allows for fast updates on the index. The second index, built from external data sources, is
a hash-based map from properties to a Deterministic Finite Automaton (DFA). This index allows fast
searches on the index for similar terms. Details concerning this index, such as the automata construction
process and the similarity-based query are exposed in Section 4.1.2.

Finally, the Properties Matcher is an important component of OntoGenesis Engine that aims to
properly match the set of terms of each property provided by a data service, with the set of terms of
each property existing in external data sources. Thus, it uses the Index Repository to obtain all the terms
associated to properties. In other words, it uses both indexes to perform the matching mechanism so as to
figure out the overlap between the objects of properties in different datasets. The aim of the Properties

Matcher is to find out equivalences between the constructed ontology and well-known ontologies used by
external sources. Section 4.1.3 describes in detail the matching process as well as the algorithm applied to
match the properties and establish equivalences between ontologies.

4.1.1 Ontology Construction

Listing 2 presents a sample of a primary OWL ontology constructed by the Ontology Builder based on a
given JSON representation, shown in Listing 1). The values contained in this JSON represent real data
of a police report, published by the Public Security Secretariat of the state of São Paulo (SSP/SP), with
information regarding a person involved in the reported event (e.g., a victim, witness or perpetrator).

Attribute names of a representation are mapped to a property instance in the ontology. The type of
this property is determined as follows:

1. owl:ObjectProperty if used exclusively with object values of a representation;

2. owl:DatatypeProperty if used exclusively with primitive values;

3. only rdf:Property otherwise.

The URI of the property instance is determined by a simple concatenation of the attribute name with the
ontology prefix, which is defined in accordance with the service URI provided by the Services Repository
component.

8/27

Listing 1 Sample of a JSON representation of a Police Report.
1 {
2 "PoliceReport": {
3 "reportID": "2015-10004-794",
4 "location": "Train Station ...",
5 ...
6 "personInvolved": {
7 "name": "CARLOS ALBERTO DOS SANTOS",
8 "docID": "015****18",
9 "birthDate": "12-21-1966",

10 "nationality": "Brazilian",
11 "placeOfBirth": "Sao Paulo-SP",
12 "gender" : "Male",
13 ...
14 }
15 }
16 }

Listing 2 Sample of an Ontology in Turtle built from the JSON Representation.
1 @prefix : <http://service-example/ontology#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
6 <http://service-example/ontology> a owl:Ontology .
7 :PoliceReport a owl:Class .
8 :PersonInvolved a owl:Class .
9 :hasPersonInvolved a owl:ObjectProperty; rdfs:domain :PoliceReport;

10 rdfs:range :PersonInvolved .
11 :reportID a owl:DatatypeProperty ; rdfs:domain :PoliceReport;
12 rdfs:range xsd:string .
13 :location a owl:DatatypeProperty ; rdfs:domain :PoliceReport;
14 rdfs:range xsd:string .
15 :name a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
16 rdfs:range xsd:string .
17 :docID a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
18 rdfs:range xsd:string .
19 :birthDate a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
20 rdfs:range xsd:date .
21 :nationality a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
22 rdfs:range xsd:string .
23 :placeOfBirth a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
24 rdfs:range xsd:string .
25 :gender a owl:DatatypeProperty ; rdfs:domain :PersonInvolved;
26 rdfs:range xsd:string .
27 # ...

Classes are generated from two sources. First, any owl:ObjectProperty instance p originates
a new class C (e.g., line 07 of Listing 2), as well as the triple 〈p rdfs:range C〉 (line 10). Any
property q extracted from object values of the attribute name corresponding to p will also take the triple
〈q rdfs:domain C〉 (lines 11-26). The second source is the name of the endpoint from where the
representation originated. Such class R generated in this manner will be the rdfs:domain of all
properties that correspond to attribute names found in the root objects of the representations sharing
the same endpoint name (e.g, line 11). The rationale for this is that, within a typical Web service,
endpoints (for instance, a resource method in JAX-RS1) will serve entities of the same type. Furthermore,
such endpoint name can be inferred by a tool automating registry and representation submission to
OntoGenesis.

In parallel with the ontology construction process, the Ontology Builder also yields the Semantic
Mappings (SM), as discussed in Section 3. For each ontology property p of a type t created in accordance
with an attribute a of the service representation, it generates the 3-tuple SM = {a, p, t}, which is useful for
converting such representation to JSON-LD.

Despite the fact that the primary ontology produced by the Ontology Builder supplies semantic

1JSR 339: https://jcp.org/en/jsr/detail?id=339.

9/27

https://jcp.org/en/jsr/detail?id=339

O H

Y
E

N S O

O B SR

N
J

13

1 2 3 4

5 6 7 8 9 10 11

12

Figure 3. Sample of minimized DFA accepting some first names.

concepts related to the data provided by the service, such concepts are only known by the data service.
In order to allow richer integration with other existing Semantic Web applications or services, it is
necessary that the constructed ontology reuses (or aligns to) concepts defined by well-known and open
ontologies/vocabularies. To this end, OntoGenesis aims to find out equivalent concepts (specifically
properties) between the constructed ontology and external sources in order to expand the ontology and
thereafter afford further reasoning tasks.

4.1.2 Similarity-based Index Construction and Querying

As previously described, the second type of index managed by the Index Repository assumes the form of
p→M, where p is the RDF predicate (more specifically a property observed in external data source) and
M is a Deterministic Finite Automaton (DFA) (Hopcroft and Ullman, 1990). These automata are built
so that the language accepted by the automata M for property p, denoted L(M), is the set of all lexical
forms of literal objects observed for property p in the external data sources. For example, Figure 3 shows
one such DFA that accepts the strings “JOEY”, “JOHNSON”, “ROB” and “ROBSON”. The algorithm
for adding a new literal value w to M consists in attempting to recognize w, and when recognition fails,
inserting the transitions and states required so that w is accepted. For example, adding the string “JOHN”
to the DFA in Figure 3 only requires marking state 8 as final, while adding “ROBERT” requires adding the
transitions and states for “ERT”, after “ROB” has been already recognized. Once all triples in the external
sources are added in this manner, the DFA M is minimized, for better performance during querying.

Queries against the external data index are not queries for w ∈ L(M), as would be done in a normal
index. Instead, what is required of this index are Similarity-Based Queries (SBQ), where given w, the
answer should be whether there is an w′ ∈ L(M), sufficiently similar to w. In this paper, the similarity
criteria is the Levenshtein distance with a threshold of 1 (dL(w,w′) ≤ 1). Formally, the SBQ can be
expressed as evaluating whether L(M)∩L(LEV1(w)) 6= /0, where LEV1 is an automata that accepts any
string w′ such that dL(w,w′) ≤ 1 (Schulz and Mihov, 2002). Since the intersection automaton is an
automaton that models concurrent execution of its component automata, the query algorithm materializes
neither it nor LEV1(w), and computes them on-demand while evaluating if the intersection is empty.

The algorithm for SBQ is shown in Algorithm 1. The algorithm concurrently explores states in M

and in LEV1(w), which are combined in a joint state (js). Joint states contain the state in M and encode
the state in LEV1 by the unrecognized portion of w and the number of edits applied. We denote access
to these components, respectively by js[1], js[2] and js[3]. Exploration starts from the initial state of M,
against the whole w string and with zero edits. Transitions in M (lines 9 – 12) and transitions in LEV1(w)

(lines 13 — 15) are explored until a final state in M is reached (lines 6–8). Transitions for M are obtained
from the transition function δM , while transitions from LEV1 (insert, delete or replace a character) are
generated by the editStates function. Transitions in LEV1 change the joint state by increasing the number
of edits (js[3]) and by changing the unrecognized string accordingly (deletions and insertions retain the
same unrecognized string, while replacements recognize its first character).

Heuristic rules are also employed as sources of information for the alignment process. Such rules are

10/27

Algorithm 1 Similarity Based Querying with Levenshtein

1: procedure FINDSIMILAR(M, w = w1 . . .wn)
2: stack← /0 . Joint states of M and LEV1(w)
3: PUSH(stack,〈initialState(M), w1 . . .wn, 0〉)
4: while stack 6= /0 do
5: js← POP(stack)
6: if isFinal(s[1]) then
7: return true
8: end if
9: next← δ (M, js[1]) . Next state in M, if defined

10: if next 6= null then
11: PUSH(stack, 〈next, js[2]2 . . . js[2]n, js[3]〉)
12: end if
13: if js[3]< 1 then
14: PUSH(stack, editStates(js)) . Explore transitions from LEV1(w)
15: end if
16: end while
17: return false
18: end procedure

patterns that can be expressed as regular expressions, bound to a property p. One simple example of a
rule R is dbo:date→ [0-9]{4}-[0-9]{2}-[0-9]{2}. When the terms of a property p1 (from
a data service) match, for instance, with such R, then p1 can be considered as an equivalent property of
dbo:date. Since the index for external sources consists of a DFA M, instead of a tree, heuristic rules
can be merged directly into M, causing any string that matches a rule to be considered part of the index.

4.1.3 Property Matching

In order to calculate the degree of overlapping data between two properties (existing in both indexes)
and find out more accurate equivalent properties, we define a strength value for each performed property
matching. We provide an equation to compute the equivalent property strength for two properties p1 and
p2 as follows:

Strength(p1, p2) =
|V p1

⋂
s V p2|

|V p1|
(1)

where V p1 is the set of terms provided by a data service pertaining to a given property p1, and V p2 is
the set of values of a property p2 provided by an external source, or recognized by any heuristic rule
bound to p2. The intersection

⋂
s uses a similarity-based algorithm to check whether a term t1 ∈ V p1 is

similar to a term t2 ∈ V p2 and thereby can be considered as a co-occurrence. Besides Levenshtein, other
similarity measures could be used, possibly requiring a change in the external sources index for efficient
similarity-based query. Based on the overlap strength, we identify the degree of correspondence between
two properties, so the higher the overlapping strength, the most likely that the properties are equivalent.

Figure 4 illustrates the equation (1) in a scenario with three properties. service:prop1 is a
property from an ontology automatically constructed for a data service, while the other two properties
come from external data sources. The rounded hatched rectangles represent V p1

⋂
dL≤1 V p2. Although

geo:name has an intersection with the generated property, we can observe that the strength of this
relation (0.33) is smaller than that between service:prop1 and dbo:givenName (0.83). In view
of that, we can define a threshold for the strength so that property pairs without significant support for
their equivalence can be discarded.

11/27

geo:name dbo:givenNameservice:prop1

London
Chicago
Brasilia
Vienna
Virginia

Washington
...

John
Chris
Mary

Robert
Virginya

Washington

Te
rm

s

Properties

John
Cris

Mary
Robert

Virginia
Richard

...

Strength(service:prop1, dbo:givenName) ≈ 0.83
Strength(service:prop1, geo:name) ≈ 0.33

Figure 4. Example of overlapping property values.

Algorithm 2 presents the main steps for determining property equivalences from comparing property
values provided by data services with external data sources. The procedure receives as input the ontology
O constructed for the data service; the indexes I and I ′ containing, respectively, data from service
representations and external sources; and the strength threshold represented by α . The algorithm starts
matching all properties from the data services with properties obtained from external sources (lines 2-4).
For each P1,P2 pair, the algorithm counts how many of the values enumerated in V p1 (line 3) are also
present in V p2 (lines 5-10). This counting employs the FINDSIMILAR procedure (Algorithm 1) on the
DFA for the objects of P2 (lines 5 and 8). The strength is computed in line 11, in accordance to equation
(1). In what follows, a triple stating that P1 and P2 are equivalent is created (line 12) and it is added to the
ontology if strength satisfies the threshold α , or removed from the ontology otherwise (lines 14-16).

In order to improve efficiency, the implementation of the algorithm in OntoGenesis Engine was done
in such a way that the strength result is stored in memory and updated to each new set of values coming
from the data service. Thus, it is not necessary to recalculate the intersection of the whole set, but only of
the new terms received, to update the strength.

4.2 OntoGenesis API

The OntoGenesis API is a RESTful API meant to be accessible for all data services that need to be
semantically enriched. This API exposes two main features: i) register the data service in the Services
Repository, and ii) invoke the OntoGenesis Engine to semantically enrich received representations
from registered data services. It is worth noting that the OntoGenesis API is an intermediate layer of
communication between services and the main components of the OntoGenesis Engine.

When a given consumer interacts with a registered service, the latter sends the resource requested by
the user to the OntoGenesis API for semantic enrichment. The OntoGenesis API invokes the OntoGenesis
Engine and returns to the data service its new ontology, along with the semantic mappings. Therefore,
legacy data services that provide purely syntactic representations are able to register with OntoGenesis
and be dynamically enriched with semantic data.

The OntoGenesis API supports custom configurations, such as a threshold, for the equivalent properties
strength, and the size of the representation buffer. The former must be configured with values from 0 to 1
and it is used during execution of the property matching algorithm (Algorithm 2). The representation
buffer size defines how many data service representations will be sent to the OntoGenesis Engine to be

12/27

Algorithm 2 Property Matching

1: procedure MATCHPROPERTIES(O , I , I ′, α)
2: for each P1 ∈ GETPROPERTIES(I) do
3: V p1← GETVALUES(I ,P1)
4: for each P2 ∈ GETPROPERTIES(I ′) do
5: M← GETDFAFOR(I ′,P2)
6: overlap← 0
7: for each v ∈ V p1 do
8: if FINDSIMILAR(M,v) then
9: overlap← overlap+1

10: end if
11: end for
12: strength← overlap

|V p1|
13: equivProp← 〈P1 owl:equivalentProperty P2〉
14: if strength≥ α then
15: add equivProp to O
16: else if equivProp ∈ O then
17: remove equivProp from O
18: end if
19: end for
20: end for
21: end procedure

processed. When it is customized with a value greater than one, representations from each service are
stored in a buffer before they are sent to the Engine. Thus, instead of forwarding representations one by
one, it sends a batch of representations to the Engine in order to reduce the calls and therefore improve the
performance of the semantic matching process. It is worth noting, however, that the larger the buffer size,
the longer it will take for the service to be enriched. Experimental results concerning the representation
buffer size are presented in Section 5.

Finally, the OntoGenesis API offers an interface that allows loading new external data sources into the
Index Repository. Accordingly, users can send new datasets to be loaded, so that their content will be
considered at runtime by the Properties Matcher in forthcoming service requests.

4.3 Semantic Adapter

The Semantic Adapter is a component that must be attached to a data service that will be semantically
enriched and thereby provide both semantic description and representations. As shown in Figure 1,
it is responsible for the interaction between the data service and the OntoGenesis API. In addition to
being imported into the data service implementation, its only required configuration is the URI of the
OntoGenesis API. Therefore, by using the Semantic Adapter, the service registration in OntoGenesis is
performed automatically when the service is deployed.

It manages three elements: the Semantic Description, the Domain Ontology generated by the Engine
and the Mapping Repository. The Mapping Repository has the purpose of storing the associations of
the elements extracted from the representations and the service description with the concepts defined in
the ontology. It is accessed whenever the service responds to any request. Both the semantic description
and the ontology are published by the Semantic Adapter through a service endpoint, so as to make them
accessible to external consumers.

13/27

Data Service

Semantic Adapter
Consumer OntoGenesis

API / Engine

Request
Interceptation

Request
Interceptation

Extraction of the Syntactic
Representation Elements

Extraction of the Syntactic
Representation Elements

Updating the Ontology
and Index Repository

Updating the Ontology
and Index Repository

Obtaining Equivalent
Concepts from

External Sources

Obtaining Equivalent
Concepts from

External Sources

Ontology
Enhancement

Ontology
Enhancement

Generation of
Semantic
Mappings

Generation of
Semantic
Mappings

Identfied
Equivalences?

None
Equivalences

Updating the
Semantic
Mappings

Updating the
Semantic
Mappings

Constructing the
Prefixes / Context
Constructing the
Prefixes / Context

Generation of
Semantic

Representation

Generation of
Semantic

RepresentationJSON-LD

Request

Figure 5. Processing Flow of the Representations Enrichment.

4.3.1 Generating Semantic Representations

Figure 5 shows the activity diagram in which a consumer sends a request to the data service and illustrates
the processing flow performed by the main components. When a given consumer sends a request to the
data service, the Semantic Adapter intercepts the request and transparently invokes the OntoGenesis API,
which delegates to the Engine the construction of a domain ontology and semantic mappings. Based
on these artifacts, a new semantic representation serialized in JSON-LD is generated by the adapter and
returned to service consumers. Therefore, instead of providing syntactic data, the data service is able to
serve linked data to its clients.

The Semantic Adapter also takes into consideration the @id, @type and @context syntax tokens
(Lanthaler et al., 2014) to create JSON-LD documents. The @id uniquely identifies the resource data
(specifically, the requested URI) that is being described. The @type describes the resource described
by the JSON-LD with a concept in the ontology, and the @context is used to map terms that expand
to URIs, also defined in the ontology. These terms are kept the same as declared in the syntactic
representation, to avoid removing any field that would otherwise be present in the original representation.
A key benefit of adopting this feature is to allow both semantic-capable and syntactic consumers (i.e.,
those unable to process semantic data) to process the new outputs of the data service, since the attribute
labels do not change. Listing 3 shows a sample of JSON-LD context mapping the JSON representation
and ontology illustrated in the previous example of Listings 1 and 2.

14/27

Listing 3 Excerpt of a JSON-LD context.
1 { "@context": {
2 "PoliceReport": "http://service-example/ontology/PoliceReport",
3 "reportID": "http://service-example/ontology/reportID",
4 ...
5 "personInvolved": "http://service-example/ontology/hasPersonInvolved",
6 "name": "http://service-example/ontology/name",
7 "docID": "http://service-example/ontology/docID",
8 "birthDate": "http://service-example/ontology/birthDate",
9 "nationality": "http://service-example/ontology/nationality",

10 ...
11 },
12 "@id": "http://service-example/policeReport?reportID=2015-10004-794",
13 "@type": "PoliceReport",
14 }

Listing 4 TemplatedLink of a Semantic Description using Hydra.
1 {
2 "@context":"http://www.w3.org/ns/hydra/context.jsonld",
3 "@id":"http://service-example/doc",
4 "@type":"hydra:ApiDocumentation",
5 "hydra:supportedClass":[
6 {
7 "@id":"http://service-example/ontology/EntryPoint",
8 "@type":"hydra:Class",
9 "hydra:supportedProperty": [

10 {
11 "@id":"findPerson"
12 "rdfs:range":"http://service-example/ontology/PersonInvolved",
13 "@type":["hydra:TemplatedLink","hydra:IriTemplate"],
14 "hydra:template":"http://service-example/person/rg/{?idPerson}",
15 "mapping":[
16 {
17 "@type":"IriTemplateMapping",
18 "variable":"idPerson",
19 "property":"http:/service-example/ontology/docID",
20 "required":true
21 }
22],
23 "supportedOperation":[
24 {
25 "@type":"Operation",
26 "method":"GET",
27 "returns":"http://service-example/ontology/PersonInvolved"
28 }]
29 }]
30 }]
31 }

4.3.2 Generating Semantic Description

The service description is also enriched with semantic features during a request. The Semantic Adapter
stores a semantic service description containing all the endpoints available. It adopts Hydra vocabulary
(Lanthaler and Guetl, 2013) for representing data service descriptions, defining the entities that a data
service is able to manage and how to obtain them. Hydra employs the concept of classes to describe the
resources (identified by a URI), containing their supported properties and operations. Each operation also
informs the HTTP method that must be used. The code of Listing 4 describes an Hydra TemplatedLink
from a service description using Hydra. Line 23 shows the supported operations (with a GET method).
The type of resource to be returned is indicated by the element returns (line 27).

Hydra also provides support for the consumer to build the URL at run time, through the IriTemplate

class. This class specifies a URI Template (Gregorio et al., 2012) and maps its variables to properties
described in Hydra. In the example of Listing 4, idPerson must be replaced by a value associated with
the Person class, in order to access the desired resource.

Algorithm 3 shows the basic steps performed by the Semantic Adapter to enrich the mappings. It
is called after OntoGenesis returns the ontology and Semantic Mappings. The procedure receives as

15/27

Algorithm 3 Mappings enrichment.

1: procedure ENRICHMAPPING(URI, htt pMethod)
2: uriTemp← GETORCREATEURITEMPLATE(URI,htt pMethod)
3: Puri← GETPARAMETERSOF(uriTemp)
4: P¬SM ← /0 . Parameters not in SM
5: json← /0
6: for each param ∈ Puri do
7: if param ∈ SM then
8: op← SM.getOntologyPropertyO f (param)
9: paramMapping← uriTemp.getMappingO f (param)

10: paramMapping.property← op
11: else
12: V ← GETVALUESOF(param)
13: json.add(param,V)
14: P¬SM.insert(param)
15: end if
16: end for
17: if P¬SM 6= /0 then
18: SENDTOONTOGENESIS(json) . Updates: SM and Ontology
19: for each param ∈ P¬SM do
20: op← SM.getOntologyPropertyO f (param)
21: paramMapping← uriTemp.getMappingO f (param)
22: paramMapping.property← op
23: end for
24: end if
25: end procedure

input the URI requested by the consumer as well as the HTTP method used for the request (GET, POST,
DELETE, etc.). Initially, the Semantic Adapter seeks in the Service Description Repository for the IRI
Template associated to the URI called by the consumer. If the URI is not described in the description, a
new IRITemplate is created for such URI (line 2). Afterwards, all URI parameters are extracted (line 3).
For each existing parameter, it is verified if there is a mapping in the SM (lines 7-8). If so, the ontology
property associated with the syntactic parameter is retrieved and added as the property of the IRITemplate

mapping (lines 9-10). Otherwise, the parameter and its values are added to JSON structure, in addition to
adding the parameter in an auxiliary variable, P¬SM (lines 12-14).

After processing all the URI parameters, the algorithm verifies if there is any parameter that was
not associated with any semantic concept (due to the lack of semantic mappings) and, if so, it sends to
the OntoGenesis Engine a JSON containing all these parameters and their values (lines 17-18). When
OntoGenesis receives such JSON, follows the entire flow for adding to the ontology the semantic concepts
related to the parameters contained in the JSON document. At the end of the process, the updated ontology
is returned to the service along with new semantic mappings. Lines 19 to 23 represent the same process
of enriching the parameters described previously for lines 8 through 10. In the end, all URL parameters
have a property in the service ontology, and they are associated by the mapping of Hydra description.

In addition, Algorithm 4 associates the semantic concept to the returns field in the Hydra descrip-
tion. It is done based on the entity type of the representation. The type can be found in the @type
property in the generated JSON-LD for the representation, as shown in Listing 3.

In summary, the Semantic Adapter provides a way to dynamically enrich service description and
representations. A non-intrusive implementation of the Semantic Adapter is provided for the JAX-RS
specification so as to intercept the requests coming to a data service. This implementation transparently

16/27

Algorithm 4 Operation returns enrichment.

1: procedure ENRICHSUPPORTEDOPERATION(URI, htt pMethod, jsonLD)
2: uriTemp← GETORCREATEURITEMPLATE(URI,htt pMethod)
3: operation← GETOPERATION(uriTemp,htt pMethod)
4: type← EXTRACTTYPEFROM(jsonLD)
5: operation.returns← type
6: end procedure

diverts responses with representations generated by the data service to the OntoGenesis API, and i)
replaces them with JSON-LD, and ii) semantically enriches its description. Moreover, the Semantic
Adapter provides the data service with an endpoint to share the constructed ontology and its Hydra
description in accordance with its URI base. Semantic applications can thereby retrieve the service
description and the ontology in order to perform reasoning tasks.

5 EVALUATION

In this section we describe the scenario in which the evaluation was performed, the experimental method-
ology and the obtained results. The aim of this evaluation is to show the applicability of OntoGenesis and
to analyze the compliance and performance measures using real world data. Regarding compliance, we
analyze the recall, precision and F-measure obtained by the proposed algorithm, and in the performance
measures we observed the average processing time, memory and CPU consumption. In the end, we briefly
describe a test performed with two ontology matchers in order to compare them with our approach.

5.1 Scenario
The scenario is based on open government data published by SSP/SP, which discloses police reports in a
non-structured format. Two categories of reports were selected: "intentional homicide" and "suspicious
death", due to the large attention given to these types of crime/death. The police report provides
information on those involved (victims and perpetrators), such as name, document number, birth date,
nationality, place of birth, gender, among others. In spite of being a substantial initiative of information
transparency to society, SSP/SP does not publish information in a suitable format to be integrated and
reused by other data sources or even analyzed by researchers. In order to enrich this information, we have
deployed a data service that provides non-semantic data of those who have been involved in any police
report filed in the year of 2015.

As external data sources of OntoGenesis, we have used subsets of both DBpedia and Geonames.
DBpedia is a huge cross-domain database that offers diverse Linked Data extracted from information
boxes in Wikipedia pages. Geonames is a geographical database containing more than 160 million RDF
triples available on the Web, and also comprises a vocabulary for representing information on places,
such as latitude, longitude, name, etc. A pair of subsets of Geonames was utilized due to their potential
for data intersection: Places in Brazil and Country names. In addition, we have selected the 40% most
frequent terms of the DBpedia-Person dataset, which contains more than 3.5 million triples representing
attributes of a person, such as name, birth date, birth place, among others.

5.2 Methodology
The deployed data service provides OntoGenesis with JSON representations that may contain up to ten
attributes of a person. Nine of these attributes have equivalent properties in external sources and only one
has no correspondences. Therefore, this one must have a datatype property in the ontology, but with no

17/27

equivalent property. It is worth mentioning that all representation attributes provided by the data service
were labeled in Portuguese, literally as in the data source, whereas the properties of external sources
remained in English.

We analyzed the behavior of our approach setting three different values for the threshold of equivalent
properties strength: 0.4, 0.6 and 0.8. For experimental purposes, we have configured the representation
size buffer to 1, that is, OntoGenesis will process each request at a time. When it receives a representation
from the data service, OntoGenesis extracts all values, checks overlapping of terms with external sources
and, finally, updates the data service ontology with new properties and equivalent properties, in accordance
with the configured strength threshold.

The experiments were performed using random person data, with 7 rounds of 100 requests sent by
the data service to OntoGenesis for each of the thresholds. All experiments were performed on an Intel
i7 processor running at 2.5GHz, equipped with 8GiB of memory, using Oracle Java Development Kit
(JDK) 8 with Xms=128M and Xmx=1024M, and Apache Jena 3.3.0 for RDF and ontology processing.
Source code and instructions for setting up the evaluation as well as the detailed experimental results are
available in a public repository2.

5.3 Compliance Evaluation

Figure 6 shows the average of precision and recall per request, considering the 7 rounds of execution
and their confidence interval in the shadowed area surrounding the lines. It also depicts the F-measure,
representing the harmonic mean of precision and recall. Figure 6 (a) shows that in the scenario with a
strength threshold of 0.4, the recall is kept stable, reaching almost 0.9 after 20 requests, while the precision
slightly decreases to 0.3. In the second scenario, with a threshold of 0.6 (Figure 6 (b)), the recall increases
before executing 10 requests, while the precision slightly increases, reaching almost 0.4. On the other
hand, in the scenario with a threshold of 0.8 (Figure 6 (c)), the precision reaches nearly 0.6, with recall
and F-Measure of approximately 0.85 and 0.7, respectively.

In all scenarios, after some time, OntoGenesis was capable of enriching, with equivalent properties,
8 out of 9 properties that could be enriched (approx. 0.89 of recall). In addition, it has also found false
positive equivalent properties for the same datatype property. The reason behind this is that there are
few different properties sharing the same frequent terms. For instance, pessoa:nome (a property of
the data service ontology that represents a person’s name) has correspondences with dbpedia:name,
dbpedia:surname and dbpedia:givenName. Nevertheless, we consider only dbpedia:name
as the correct match. In the same way, pessoa:naturalidade (a property of the data service
ontology related to the place of birth) has correspondences with dbpedia:name and geo:name,
since there are several places in Brazil that are named after a person. These situations can be dealt with
increasing the strength threshold. The higher the threshold, the higher is the precision. Nonetheless, we
must pass a balanced value to maintain a suitable recall score, otherwise, the recall tends to decrease. Both
recall and precision are also related to the overlapping of data existing between service representations and
external sources. In the first requests in scenario with threshold α = 0.8, we observed a slight decrease in
the recall, since many property values of service did not match those of DBpedia nor Geonames, which
leads to a strength 6 α . Therefore, in scenarios with higher thresholds, the strength tends to balance as
new values are passed to each request.

2Repository: https://github.com/brunocnoliveira/ijwis2018-ontogenesis-experiments.

18/27

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 /
 R

ec
al

l /
 F

-M
ea

su
re

Number of Requests

95% Conf. Limits 95% Conf. Limits

95% Conf. Limits Recall

F-Measure Precision

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 /
 R

ec
al

l /
 F

-M
ea

su
re

Number of Requests

95% Conf. Limits 95% Conf. Limits

95% Conf. Limits Recall

F-Measure Precision

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 /
 R

ec
al

l /
 F

-M
ea

su
re

Number of Requests

95% Conf. Limits

95% Conf. Limits

95% Conf. Limits

Recall

F-Measure

Precision

(c)

Figure 6. Precision, Recall and F-Measure curves for strength threshold (a) α = 0.4; (b) α = 0.6; and
(c) α = 0.8.

19/27

α = 0.4 α = 0.6 α = 0.8

50

100

150

200

250

Thresholds

M
ea

n
T

im
e

fo
r

R
eq

ue
st

s
 (

m
s)

Figure 7. Requests Time Analysis.

5.4 Performance Evaluation

According to Euzenat et al. (2005), the two most commonly used performance measures are the speed
(i.e., the processing time) and the memory consumption. We have analyzed both measures in addition
to the CPU consumption rate. The performance evaluation reuses the same methodology discussed in
subsection 5.2.

Table 1 presents the mean processing time for 4 variables (semantic mappings (SM) and ontology
construction; property matching process; JSON-LD generation; and description enrichment), along with
their confidence interval for the mean of all observations for each combination of variable and α level.
One can notice that there is no significant alteration in execution time between the adopted thresholds.
Additionally, the processing time is independent of the number of requests, since previous requests are
not reprocessed, but only the strength of equivalent properties is recalculated. Moreover, Figure 7 shows a
boxplot for the average time (across the 7 rounds) of each of the 100 requests. Such boxplot represents the
50% quantile around the median, and the 1.5 inter-quantile range threshold for outliers. While the mean
observed for the α = 0.8 is slightly higher, the three sampling distributions largely overlap, suggesting
that, in practice, the effect of the threshold on time is of little importance.

Unlike the compliance measures, performance measures depend on the benchmark processing envi-
ronment. In view of that, the same environment settings previously described was used. However, in order
to analyze the average of memory and CPU consumption we have conducted an additional experiment in
which a consumer sends random requests to OntoGenesis for a period of time. We started measuring after

Table 1. Processing times with 95% Confidence Interval.

α* SM and Ontology
Construction

Properties
Matching

JSON-LD
Generation

Description
Enrichment

0.4 19.10 ± 1.17 ms 19.57 ± 2.48 ms 3.57 ± 0.32 ms 1.21 ± 0.027 ms
0.6 17.98 ± 0.97 ms 18.05 ± 1.42 ms 3.39 ± 0.26 ms 1.12 ± 0.024 ms
0.8 19.58 ± 1.08 ms 21.22 ± 1.75 ms 4.23 ± 0.35 ms 1.19 ± 0.032 ms

*α = Strength threshold

20/27

0

100

200

300

400

500

0 10 20 30 40 50 60

 M
em

o
ry

 U
sa

ge
 (

M
B

)
Elapsed Time (seconds)

Heap Size Used heap

Figure 8. Average Memory Consumption of OntoGenesis.

an initial preheating phase consisting of a portion of requests during 5 seconds, in order to reduce the
variance introduced by the Java Just-in-Time compiler. It is worth noting that the resources consumption
regarding the OntoGenesis setup (including external data source loading and the automaton construction)
is not accounting in this experiment. Therefore, both memory and CPU consumption variables were
monitored during 60 seconds after OntoGenesis executes the preheating phase. Such measures were
observed in the JVM in which OntoGenesis was executed.

0

20

40

60

80

100

0 10 20 30 40 50 60

 C
P

U
 U

sa
ge

 (
%

)

Elapsed Time (seconds)

Figure 9. Average CPU Consumption of OntoGenesis.

Figures 8 and 9 show the average memory consumption and the mean CPU consumption, respectively,
considering 7 rounds of execution. As can be seen, the average of used heap size reaches up to 300MB
and there are few variations over time. This experiment considers synchronous requests of a single client,
which avoid full occupancy of the CPU by the engine process, as a large portion of time dedicated to
the synchronous HTTP communication with the client occurs while the engine process is deemed not
runnable by the operating system scheduler. Therefore, the average CPU consumption reaches up to 40%
and remains below this value during execution.

5.5 Other Ontology Matchers
Extensional-based techniques can be adapted for service enrichment (Salvadori et al., 2017) and, similarly
to OntoGenesis, exploit instance data to find ontology alignments. They rely on individuals obtained from

21/27

0 2 4 6 8 10 12 14 16 18 20

OntoGenesis

PARIS

AROMA

Time (min)

Figure 10. Processing Time Comparison.

data services and from external sources to check if they have some intersecting properties, i.e., properties
with matching identifiers or with values in the same domain. This correference or value sharing among
properties is used to infer property and class equivalences among different ontologies.

Firstly, we converted our scenario from service semantic enrichment to ontology alignment. The
goal is to align the ontology constructed by OntoGenesis (without alignments) against DBpedia ontology,
FOAF and Geonames. To this end, two files are generated. The first contains the constructed ontology
along with 1021 person instances described in this ontology. The second file contains external ontologies
and all instances from the external datasets. We evaluated two extensional matchers, PARIS (Suchanek
et al., 2011) and AROMA (David et al., 2007), executing 7 rounds in each test. Nevertheless, none
were able to produce property alignments. The results were also not favorable performance-wise: on
average, AROMA took almost 18 minutes, PARIS took 1 minute 45 seconds and OntoGenesis took only
39 seconds. Figure 10 shows the processing time for both extensional matchers in comparison with
OntoGenesis.

The challenge to these otherwise successful ontology matchers is in the absence of correferent and data
sharing between the service data and the external data. For instance, we observed that the only complete
literal shared between the two service data and external data is “Preta”3. Extending the comparison to
Levenshtein with threshold 1, there are 2,324 (0.20%) subjects in the external data that share a single
literal value with the service data. However, no such subject shares the value of more than one property
with a counterpart in the service dataset, which becomes a challenge for extensional matchers that are
based on the similarity of individuals.

6 RELATED WORK

The topic of semantic enrichment of Web services is related to some similar problems, such as ontology
construction, ontology matching, automatic service representation and description generation, among
others. A variety of research works have been proposed to address these problems. In view of that, the
related work is divided into two major categories. The first category discusses research on data-based
ontology construction and ontology matching approaches. The second category concerns proposals related
to the semantic enrichment of services.

As discussed in section 2, Euzenat and Shvaiko (2007) identify 4 groups of ontology matching
approaches, each with specific challenges in the scenario of semantic enrichment of services. Name-based
techniques require ontology elements to be labeled in the same language (which was not the case for the

3“Preta” means black skin color in Portuguese and is also a place in the GeoNames dataset (http://www.geonames.org/
3391216).

22/27

http://www.geonames.org/3391216
http://www.geonames.org/3391216

scenario in section 5) and to have elements with similar names. Semantic and structure-based techniques
analyze ontology features, e.g., the class hierarchy and relations between classes. Thus, OntoGenesis
constructs ontologies with a flat class hierarchy (without subclasses) and the only relations between
classes occur through domains and ranges of properties. Although extensional-based techniques can
be adapted for service enrichment (Salvadori et al., 2017), such techniques present poor performance
(as shown in section 5.5) when data obtained through the service interface is unrelated to data from
the external sources and when individuals are not the same. In light of such evidence, we argue that
extensional ontology matching algorithms present distinct characteristics from the problem we tackle,
specifically property matches.

On the other hand, there are few efforts focusing on matching properties in ontologies. Tran et al.
(2011) introduce a cluster-based similarity aggregation methodology for ontology matching, which relies
on some different similarity measures to align object properties based on their domains and ranges. The
authors, however, mention that the evaluation results are not strong enough to distinguish matching and
non-matching property names. Zapilko and Mathiak (2014) identify the exact relationship between two
objects in large scale linked data, using governmental data. Their goal is to align instances of ontologies
separately and to compute the overlap between them in order to improve the matching of object properties.
Complementarily, the overlap scores use some variations of the Jaccard coefficient. A drawback in the
aforementioned approaches is that they are limited to object properties. On the other hand, Pereira Nunes
et al. (2013) use genetic algorithms to match complex Datatype properties. However, their approach also
differs from ours in the sense that their goal is the matching of one to many complex relationships in
different ontologies. In other words, the authors are interested in mapping properties that are composed of
other properties (e.g., mapping “first name” and “last name” to “full name”).

Many tools and approaches have been designed aiming to support users in the ontology construction
process (Cimiano and Völker, 2005; Salem and AbdelRahman, 2010; Nguyen and Lu, 2016). Nonetheless,
they all suffer from some shortcomings. First, most of them depend either on very specific or proprietary
ontology models, which hinders their wide applicability. Second, such approaches are not fully automatic,
since they focus on assisting expert domain users. Finally, traditional ontology construction methods
commonly require as input a huge set of unstructured text or Web page data (Nguyen and Lu, 2016),
differently from our approach, in which data is provided on demand by service interfaces.

An interesting approach is proposed by Yao et al. (2014). The authors introduce a framework for
transforming semi-structured data – specifically a set of JSON documents provided by Web services –
into a unified ontology. Firstly, the framework parses the JSON and yields RDF triple sets. Afterwards,
multiple independent ontologies are created based on the triple sets and, meanwhile, an ontology merging
process is performed to achieve one unified ontology model. The resulting ontology must be validated
by domain expert users, who can validate and edit the final ontology. Although it demonstrates to be
a relevant study related to ontology construction based on JSON representations, the authors do not
tackle the automatic semantic enrichment of Web services, neither consider the generation of a semantic
description. Furthermore, the framework only considers JSON as input and outputs a single ontology,
while OntoGenesis can support different representation formats and derive one domain ontology for
each data service. Moreover, we propose a property matching technique in order to optimize the reuse
of concepts defined in external resources, whilst they do not use any external source to enhance the
constructed ontologies. The dataset used in their experiments is not provided in the paper, but based on
the presented results, we infer that their approach, in the best case, is able to process 2,038 triples/sec. In
contrast, OntoGenesis processed approximately 96,300 triples/sec in the scenario described in section 5.

23/27

Several authors have been directing efforts towards automatic/semi-automatic semantic enrichment
of Web services (Tosi and Morasca, 2015). These works can be divided into two subgroups: service
description and service representation enrichment. The former concentrates on adding semantic informa-
tion to describe service interfaces, while the second aims to enrich service representations with semantic
features. Little attention is given to the latter group. Most of the proposals found in the literature focus on
enhancing service descriptions with semantics, such as SDWS (Bravo et al., 2014) and ASSARS (Luo
et al., 2016). Saquicela et al. (2011) propose an approach for generating semantic annotation of RESTful
services using external resources, such as DBpedia ontology and a synonymous database. Nevertheless,
semantic data is added only to the service description.

A composition method that exploits the potential data intersection observed in data-based microservice
descriptions is proposed by Salvadori et al. (2017). The proposed method focus on creating links between
semantic resources, so that representations provided by microservices are enriched with owl:sameAs
and rdfs:seeAlso links. Additionally, the authors propose a framework called Alignator, which
employs ontology matching techniques to identify equivalences between different ontologies that describe
different microservices. However, this approach only considers services that i) already adopts a previously
defined domain ontology and ii) already provide Linked Data representations and semantic descriptions.
Therefore, such framework does not support services that do not provide any description handle syntactic
data.

7 CONCLUSIONS AND FUTURE WORK

This paper presented an architecture to automatically enhance data services with semantic features. The
architecture, called OntoGenesis, aims to construct domain ontologies for describing data provided by
data services. Additionally, it improves the constructed ontology through a property matching mechanism,
which reuses well-known concepts used by external data sources. Finally, an adapter plugged into
the service transparently produces a semantic description and enriches the output representations with
semantic concepts defined in the domain ontology. Similar approaches found in the literature focus on
generating semantic descriptions in a semi-automatic way and do not cover semantic enhancement of data
provided by a service. Furthermore, solutions for ontology construction and alignment, in general, are not
suitable for scenarios in which data instances are dinamically obtained through a service interface.

Experiments were performed to analyze both compliance and performance measures. The former
indicates the equivalence strength between properties of the constructed ontology and the external data
sources according to defined thresholds. The precision is tightly related to the strength threshold, so
better F-Measure scores are achieved when the threshold is increased. In some cases, however, we
observed that similar values may also lead to wrong matches. For instance, a person’s surname could
match with a place name. The performance measures show that, in virtue of the proposed automata-based
indexing mechanism, OntoGenesis achieved faster property matching in comparison with extensional
ontology matchers. Moreover, in comparison with an ontology construction approach (Yao et al., 2014),
OntoGenesis was 47 times faster in the number of triples processed per second. Overall, the evaluation
results show that OntoGenesis is a promising approach that can boost the provisioning of semantically
enhanced data by service providers, reducing the efforts involved in the process of developing semantic
data services.

As future work, we intend to propose a mechanism to identify class equivalence, in addition to the
equivalent properties. We also aim to extend the strength equation so as to consider the frequency of each
term in the data service and in the external data sources so as to reduce false positives. Another promising

24/27

future development concerns a mechanism for filtering specific external data sources in accordance with
the domain of a data service, with the aim of achieving better performance in the execution of the property
matching algorithms.

REFERENCES

Alfaries, A. (2010). Ontology Learning for Semantic Web Services. PhD thesis, Brunel University, UK.
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. Scientific American, 284(5):34–

43.
Bianchini, D., De Antonellis, V., and Melchiori, M. (2015). Developers’ networks contribution to web

application design. In Proceedings of the 17th International Conference on Information Integration

and Web-based Applications & Services, iiWAS ’15, pages 55:1–55:10, New York, NY, USA. ACM.
Bravo, M., Rodríguez, J., and Pascual, J. (2014). SDWS: Semantic description of web services. Interna-

tional Journal of Web Services Research, 11(2):1–23.
Carey, M. J., Onose, N., and Petropoulos, M. (2012). Data Services. Communications of the ACM,

55(6):86.
Cimiano, P. and Völker, J. (2005). Text2onto: A framework for ontology learning and data-driven change

discovery. In Proc. of the 10th Internat. Conf. on Natural Language Processing and Information

Systems, NLDB’05, pages 227–238, Berlin, Heidelberg. Springer-Verlag.
David, J., Guillet, F., and Briand, H. (2007). Association Rule Ontology Matching Approach. International

Journal on Semantic Web and Information Systems, 3(2):27–49.
Euzenat, J., Ehrig, M., and Castro, R. G. (2005). Towards a methodology for evaluating alignment and

matching algorithms. Technical report, Ontology Alignment Evaluation Initiative (OAEI).
Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag New York, Inc., Secaucus, NJ,

USA.
Fellah, A., Malki, M., and Elçi, A. (2016). Web services matchmaking based on a partial ontology

alignment. International Journal of Information Technology and Computer Science (IJITCS), 8(6):9–
20.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and Orchard, D. (2012). URI Template. RFC
6570.

Guarino, N. (1997). Semantic matching: Formal ontological distinctions for information organization,
extraction, and integration. In Information Extraction A Multidisciplinary Approach to an Emerging

Information Technology: International Summer School, SCIE-97 Frascati, Italy, July, pages 139–170.
Springer Berlin Heidelberg.

Guizzardi, G. (2007). Summary for Policymakers. In Intergovernmental Panel on Climate Change, editor,
Climate Change 2013 - The Physical Science Basis, volume 155, pages 1–30. Cambridge University
Press.

Hopcroft, J. E. and Ullman, J. D. (1990). Introduction To Automata Theory, Languages, And Computation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

Lanthaler, M. and Guetl, C. (2013). Hydra: A vocabulary for hypermedia-driven web apis. In Bizer,
C., Heath, T., Berners-Lee, T., Hausenblas, M., and Auer, S., editors, LDOW, volume 996 of CEUR

Workshop Proceedings. CEUR-WS.org.
Lanthaler, M., Sporny, M., and Kellogg, G. (2014). JSON-ld 1.0. W3C recommendation, W3C.

http://www.w3.org/TR/2014/REC-json-ld-20140116/.
Lira, H. A., Dantas, J. R. V., de Azevedo Muniz, B., Chaves, L. M., and Farias, P. P. M. (2014). Semantic

25/27

Data Services: An approach to access and manipulate Linked Data. In XL Latin American Computing

Conference (CLEI), pages 1–12. IEEE.
Luo, C. C., Zheng, Z. c., Wu, X. X., Yang, F. F., and Zhao, Y. Y. (2016). Automated structural semantic

annotation for RESTful services. International Journal of Web and Grid Services, 12(1):26–41.
Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent Systems,

16(2).
McIlraith, S., Son, T., and Zeng, H. Z. H. (2001). Semantic Web services. IEEE Intelligent Systems,

16(2):46–53.
Nguyen, T. T. S. and Lu, H. (2016). Domain ontology construction using web usage data. In Advances in

Artificial Intelligence, pages 338–344. Springer.
Oliveira, B. C. N., Huf, A., Salvadori, I., and Siqueira, F. (2017). Automatica semantic enrichment of

data services. In Proc. of Int. Conf. on Information Integration and Web-based Applications & Services.
ACM.

Pavel, S. and Euzenat, J. (2013). Ontology matching: State of the art and future challenges. IEEE

Transactions on Knowledge and Data Engineering, 25(1):158–176.
Pereira Nunes, B., Mera, A., Casanova, M. A., Fetahu, B., P. Paes Leme, L. A., and Dietze, S. (2013).

Complex matching of rdf datatype properties. In Decker, H., Lhotská, L., Link, S., Basl, J., and Tjoa,
A. M., editors, Database and Expert Systems Applications: 24th International Conference, DEXA 2013,

Prague, Czech Republic, August 26-29, 2013. Proceedings, Part I, pages 195–208, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Salem, S. and AbdelRahman, S. (2010). A multiple-domain ontology builder. In Proc. of the 23rd Internat.

Conf. on Computational Linguistics, pages 967–975, Stroudsburg, USA. Association for Computational
Linguistics.

Salvadori, I., Huf, A., Oliveira, B. C. N., Mello, R., and Siqueira, F. (2017). Improving Entity Linking
with Ontology Alignment for Semantic Microservices Composition. International Journal of Web

Information Systems, 13(3):302–323.
Saquicela, V., Vilches-Blazquez, L. M., and Corcho, O. (2011). Lightweight Semantic Annotation

of Geospatial RESTful Services. In Proceedings of the 8th Extended Semantic Web Conference on

The Semanic Web: Research and Applications - Volume Part II, ESWC’11, pages 330–344, Berlin,
Heidelberg. Springer-Verlag.

Schulz, K. U. and Mihov, S. (2002). Fast string correction with Levenshtein automata. Int. Journal on

Document Analysis and Recognition, 5(1):67–85.
Suchanek, F. M., Abiteboul, S., and Senellart, P. (2011). Paris: Probabilistic alignment of relations,

instances, and schema. Proceedings of the VLDB Endowment, 5(3):157–168.
Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. (2003). Automated discovery, interaction and

composition of semantic web services. Web Semantics: Science, Services and Agents on the World

Wide Web, 1(1):27–46.
Tosi, D. and Morasca, S. (2015). Supporting the semi-automatic semantic annotation of web services: A

systematic literature review. Information and Software Technology, 61:16–32.
Tran, Q.-V., Ichise, R., and Ho, B.-Q. (2011). Cluster-based similarity aggregation for ontology matching.

In Proceedings of the 6th International Conference on Ontology Matching - Volume 814, OM’11, pages
142–147, Aachen, Germany. CEUR-WS.org.

Yao, Y., Liu, H., Yi, J., Chen, H., Zhao, X., and Ma, X. (2014). An automatic semantic extraction method
for web data interchange. 2014 6th International Conference on Computer Science and Information

26/27

Technology (CSIT), pages 148–152.
Zapilko, B. and Mathiak, B. (2014). Object property matching utilizing the overlap between imported

ontologies. In Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., and Tordai, A., editors,
The Semantic Web: Trends and Challenges: 11th International Conference, ESWC 2014, Anissaras,

Crete, Greece, May 25-29, 2014. Proceedings, pages 737–751. Springer International Publishing.

27/27

	Introduction
	Background
	Data Services
	Ontology Construction and Matching

	Semantic Enhancement of Data Services
	The OntoGenesis Architecture
	OntoGenesis Engine
	Ontology Construction
	Similarity-based Index Construction and Querying
	Property Matching

	OntoGenesis API
	Semantic Adapter
	Generating Semantic Representations
	Generating Semantic Description

	Evaluation
	Scenario
	Methodology
	Compliance Evaluation
	Performance Evaluation
	Other Ontology Matchers

	Related Work
	Conclusions and Future Work
	References

