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Abstract—Current Web-based Services are highly heteroge-
neous not only on data but also with regard to service interac-
tion. Despite their heterogeneity, composition of these services is
required in order to achieve additional functionality. Semantic
descriptions and composition algorithms for heterogeneous ser-
vices have been recently proposed. However, existing techniques
do not take the Publish/Subscribe paradigm in consideration
or do not offer sufficient support for interaction through
hypermedia controls as required in the REST architectural
style. This paper presents a composition architecture and two
techniques, re-planning, and replication, for support of REST
and Publish/Subscribe services by composition algorithms. We
apply these techniques to a state of the art graph-based com-
position algorithm and evaluate the impact on performance.

Keywords-service composition; REST; publish-subscribe;
heterogeneous systems.

I. INTRODUCTION

With respect to Web Services implementations, there
is a technological and architectural division between ser-
vices based on the SOAP (Simple Object Access Protocol)
and those that employ the REST (REpresentational State
Transfer) architectural style [1], even if partially. Analyzing
keywords, as of August 2016 !, only 10.03% of services
registered on the ProgrammableWeb? directory reference
SOAP in their descriptions. In contrast, 73.63% of service
descriptions qualify as HTTP based services, a key char-
acteristic of REST services (there is no data refering to
actual adoption of REST constraints by the services). For
the remaining descriptions, 3.28%, belong to both groups,
7.34% to none, and 5.72% have insufficient data.

The constraints defined by the REST architectural style
are aimed at achieving architectural benefits. Therefore,
some constraints apply not only to the design of services,
but also to the behavior of clients and intermediary elements,
such as caches and proxies. One of such constraints is HA-
TEOAS (Hypertext As The Engine Of Application State). It
requires the service to expose possible actions as hypermedia
controls, which the client must take into consideration, as
opposed to simply executing a static workflow. Failure to
employ this constraint, both at server or client, will avoid
independent evolution of client and server software and can

Thttps://morph.io/IvanGoncharov/Programmable Web
Zhttp://www.programmableweb.com/

potentially lead the client to encounter faults or to ignore
data.

Additionally, while SOAP services are highly influenced
by request-response interactions, and REST is based on this
communication pattern, ESBs (Enterprise Service Buses)
and many publicly-available services (e.g. Google Calendar,
Twitter) support more complex interactions such as the
Publish/Subscribe communication paradigm [2]. In addition
to ad hoc implementations, such support may be backed
by some application-independent protocol specification (e.g.
Atom Publishing Protocol®), but there is no definitive spec-
ification for Publish/Subscribe services.

The integration of SOAP and REST services of varying
maturity levels has been tackled by researchers in several
forms. Representative examples are mediators [3], extended
process engines [4] and the use of a common description
language [5], [6]. Publish/Subscribe services are often con-
sidered in isolation, but [7] proposes integration with SOAP
services in an ESB. Simultaneous integration of SOAP,
REST and Publish/Subscribe services remains an open issue.

Automated service composition algorithms are one form
of service integration. Given a set of service descriptions,
an initial and goal states, the composition algorithm tries to
orchestrate a subset of the services in order to achieve the
goal state. During orchestration, constraints imposed by ser-
vices that are part of this composition, such as HATEOAS,
must be respected. Verborgh et al. [8] propose a composition
and execution algorithm specifically for REST services sup-
porting the HATEOAS constraint. In addition, recent SOAP
composition algorithms have achieved high performance
marks [9]. On the other hand, Publish/Subscribe services are
treated in complete isolation with techniques such as CEP
(Complex Event Processing) [10]. The goal of this paper is
to create a single composition algorithm, able to compose
SOAP, REST and Publish/Subscribe services.

In summary, this paper offers as contribution a compo-
sition architecture (featuring an intermediate description)
and two techniques to adapt a graph-based composition
algorithm into one that supports both HATEOAS and Pub-
lish/Subscribe services. Current composition algorithms and
architectures do not support both simultaneously. In addition,
architectures for Publish/Subscribe systems do not cover

3https://tools.ietf.org/html/rfc5023

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI:|10.1109/iscc.2017.8024654



https://doi.org/10.1109/iscc.2017.8024654

automated service composition, and HATEOAS is fully
supported by only one algorithm [8]. We adapt a SOAP-
oriented composition algorithm [9], replacing A* with D*
Lite [11], and evaluate a prototype of our architecture using
the the Web Services Challenge 2008 (WSC’08) [12] dataset
and the benchmark in [8]. Despite added complexity of the
platform, our prototype was faster for the majority of cases
in both benchmarks, demonstrating the feasibility of our
architecture in supporting HATEOAS for non time-critical
applications.

The remainder of this paper is structured as follows.
Related Work is discussed in section II. The intermediate
description and the composition architecture are presented
in section III and section IV. The composition algorithm
is presented in section V, with experiments discussed in
section VI and concluding remarks in section VII.

II. RELATED WORK

The problem of integrating SOAP services and REST
services has been handled by research literature in the last
decade. Proposed solutions involve mediators [3], extended
process engines [4], or a common service description. In
the last group, the MSM (Minimum Service Model) [5] is
proposed to integrate discovery and composition of both
SOAP and REST services. The MSM is a generalization
of WSDL (Web Service Description Language) concepts,
to which REST interaction concepts are mapped: Groups of
resources are mapped to a Service, resource operations to an
operation and I/O representations are mapped to messages.

In addition to the lack of support for Publish/Subscribe,
MSM has two other issues. First, it delegates most details
of message structure to other description languages, such
as hRESTS [6], which is problematic for REST services
due to the large number of such languages. Second, while
it is suggested that hypermedia controls be transported in
message data and extracted by an implementation that is
aware of them [6], a HATEOAS conformant composition
must consider hypermedia controls in planning and change
the plan according to the available controls [8].

Hypermedia controls can be seen as documentation of
state transitions within a REST service, as per the HA-
TEOAS constraint [1]. Therefore, composition of REST
services must be driven by hypermedia. However, there is
no guarantee that hypermedia controls will be offered for
a particular resource. Verborgh et al. [8] propose a proof-
guided, hypermedia-driven algorithm that optimistically as-
sumes the presence of hypermedia controls and,after every
request, verifies their presence and adapts the composition.

Other composition algorithms also have taken ser-
vice faults into account. Alves et al. [13] applies non-
deterministic planning to create workflows with contingency
plans. Although planning for failures beforehand saves exe-
cution time, the generation of all possible alternative plans is
a time-consuming process. In contrast, if there are multiple

services under frequent changes, dynamic fault tolerance
may be more appropriate.

Several service composition approaches are based on
planning techniques [9], [14], [15]. One of such is Com-
posilT [9], which reduces the problem of service composi-
tion to graph path-finding, modeling each vertex of the path
as a combination of services. Employing optimizations for
service and state size reduction, the algorithm presented high
performance. However, the algorithm is not able to handle
HATEOAS, nor Publish/Subscribe.

With respect to Publish/Subscribe services, the work of
Georgantas et al. [7] tackles the issue of multiple communi-
cation paradigms [2] through an abstract Enterprise Service
Bus. Adaptation of multiple communication paradigms is
based on the notion of send an receive as common primi-
tives. However, this is not sufficient to support HATEOAS.

III. INTERMEDIATE DESCRIPTIONS

Many differences among service interaction models can
be solved through the use of a description that abstracts
the differences. Considering popularity and versatility of
RDF* (Resource Description Framework) in exposing data
on the web, we adopt the RDFS ° (RDF Schema) vo-
cabulary to define an intermediate description vocabulary.
These intermediate descriptions are automatically produced
by translators from existing service descriptions, such as
SAWSDLS (Semantic Annotations for WSDL), Atom Ser-
vice documents and the many description languages for
REST services. During this process, translators can include
in the descriptions references to other RDF vocabularies (e.g.
HTTP’ that are used during execution.

The two main concepts of the vocabulary are Message
and Variable. Messages represent the high-level messages
exchanged during a service invocation, e.g. request and
response, or subscription and notifications. Messages contain
technical information that pertains to the protocols involved
and parts in the form of Variable instances. The vocabulary
allows a Variable to be part of another, and to be part of
something but be extracted from another location that is not
the parents’ location

A Variable may have a type, a representation and a value.
The type of a variable is assumed to be a semantic class
of which a Variable value is instance of, and representation
denotes the format of the value. This distinction is necessary
specially in REST services, in which a Resource of a
semantic type may be represented by a URI, XML document
or RDF, among others.

Figure 1 shows a fragment of a response message con-
verted from an Hydra [16] description. The message is also a
http:Response, from the HTTP vocabulary, and represents

“http://www.w3.0rg/TR/2014/REC-rdf1 1-concepts-20140225/
Shitp://www.w3.0rg/TR/2014/REC-rdf-schema-20140225/
Shttp://www.w3.org/TR/2007/REC-sawsdl-20070828/
Thttps://www.w3.0org/TR/HTTP-in-RDF/
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_:response a http:Response, u:Message;
w:part [ u:variable _ :user;
u:partModifier [ a ux-http:PartModifier;
ux-http:httpProperty http:body;
ux-http:httpResource _:response ] |;
u:when [ u:reactionTo _ :request;
u:cardinality u:one ].

Figure 1. Example intermediate description for a REST response message
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Figure 2. Overview of the service composition and execution architecture

the service output as an _:user variable, contained in the
response body. The fact that _:response is a response is
expressed conditioning its receipt to a previous message,
_request (lines 6-7 in Figure 1). Since cardinality is u:one,
the response message will be received only once. In case of
notification messages, cardinality would be u:many.

IV. HETEROGENEOUS COMPOSITION ARCHITECTURE

Figure 2 summarizes the proposed composition archi-
tecture where service descriptions are converted to an in-
termediate language, used by a composition algorithm to
output interpretable workflows. Abstraction via intermediate
description is achieved by Translators. The Service Repos-
itory indexes and manages the intermediate descriptions.
The Composer outputs workflows from the intermediate
descriptions and a user goal. The Workflows are executed
by the Interpreter, which uses components selected by the
Component Selector to handle remaining heterogeneities.
Component selection uses specific details present in the
intermediate description (which were ignored by the Com-
poser) to select the components required to interact with
the services (e.g., a SOAP client or a plain HTTP client).
The Composer itself may also request components to the
Component Selector, although such usage is specific to the
composition algorithm.

The components stored in the Component Repository
implement all tasks involved in sending and receiving mes-
sages. To send a Message, headers and a payload must
be assembled from the values of the message variables,
and then the message is sent using the relevant transport
protocol. When receiving a Message, values are extracted
from the actual message and bound to the Message variables.

The assembly of messages, and implementation of transport
protocols is responsibility of the ActionRunner class of
components. The mapping between Variable values in RDF
and actual representations transmitted in messages is done
by components of classes Renderer and Parser. Component
selection is determined by the specificities documented in
the Messsage and Variable instances, such as third-party
vocabularies (http:Response in Figure 1).

Component selection, performed by the Component Selec-
tor, consists in, given a tuple of RDF resources, (71, ..., 75 ),
finding a component description x s.t. rpaci(z) A -+ A
Tnacp(x). The ¢, functions denote OWLE (Web Ontology
Language) class expressions that x describes as supported
for each of the r, resources provided by the Interpreter or
Composer. Action runners have only one of these classes,
denoted with the actionClass property. Renderers and
parsers, on the other hand, have two, representationClass
and valueClass, which respectively specify the Variable’s
representation class and the value class (or datatype URI, in
case of a literal value). The use of OWL class expressions
in ¢1,...,c, allows fine-grained control of the range of
resources supported by the component.

V. REPLICATED AND ADAPTIVE COMPOSITION

This section presents two techniques applied to a com-
position algorithm. The first, Replication, provides basic
support for composition of Publish/Subscribe services. All
composition and execution state is stored on an object that
can be replicated and used to spawn independent executions
for each notification message of Publish/Subscribe services.
For example, consider a fictitious scientific publisher sys-
tem. As researchers submit articles to journals, events are
generated on a Publish/Subscribe service. Replication allows
a composition algorithm to be planned so that for each
submission (event), a service composition for assigning at
least three reviewers is planned and executed. The second
approach, Adaptation, adds support for the HATEOAS con-
straint. The composition plan is re-evaluated against the
actual hypermedia controls, after every service interaction.
Adaptation requires a graph-based composition algorithm,
which operates on a state graph that has the following
characteristics:

1) States contain a set (or singleton) of services;

2) The (u1,us) edge corresponds to invoking wu; services,
achieving the necessary conditions so that uy services
may be later invoked;

3) There are lists of alternatives to services and states.

An overview of a composition using an algorithm with
these techniques is depicted in Figure 3. Upon client request,
the Composer creates an execution object from the compo-
sition problem with all necessary data structures (including
the state graph) for planning the composition. A plan is

Shitp://www.w3.0rg/TR/2012/REC-owl2-syntax-20121211/
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Figure 3. Overview of an adaptive composition execution.

obtained from the state graph, as a list of state graph
edges.Each edge originates a sequence of actions executable
by the architecture (copy, send, receive), and this sequence
is further divided into slices. A slice contains at most one
receive action, that if present, is the last action.

The descriptions of all services, and other elements of the
problem (e.g., known inputs and wanted outputs), are stored
on a single RDF graph that serves as working memory of the
composition. Service inputs and outputs are present in the
graph as unbound variables, which will be bound to values
as Action Runners (described in section IV) that execute
the planned actions. After every received message, results
must be confronted with expectations so that the plan is
adapted, if necessary. Therefore, only the first slice must be
executed before control returns to the composition algorithm.
The composer returns a workflow with only the first slice,
wrapped with a Replicated Action, and with a pointer back
to the execution object. When interpreting this action, as
depicted in Figure 3, the Interpreter will use the Component
Selector to select the Replicated Action Runner, which will
return control to the composition algorithm for validation,
adaptation and execution of the next slice.

The runner selected by the Component Selector for a
replicated action works as shown in Figure 4. First, all
actions except the receive (r) are executed, producing side
effects on the execution’s context (line 2). If there is a receive
and it will result in multiple messages (line 5), each one is
received into a replicated execution (line 8) and resumed in
another thread (line 10). Single-shot messages are received
into the current context and resumed directly (lines 13-15).

The RESUME procedure of the execution object displayed
in Figure 5 closes the cycle, validating the results against
the current plan of the execution object (e). If the edge of
the state graph had its last slice executed, the effects on
context(e) are validated against the executed edge (line 4),
resulting in a set of failed services. If valid, the execution
object is advanced to the next edge of the composition path.
Otherwise, the state graph is adapted in order re-plan the
composition (lines 7-8). If the last slice was not the last one
for the current edge (remaining EdgeActions(e) # 0), the
composition is simply advanced to the next slice (line 10)
When ADVANCEEDGE meets the end of the path, it sets
the isEnded flag which causes the composition execution
to deliver a result and finish (lines 12-13). If there is still
work to do, the current slice is wrapped, and executed with
the current interpreter (line 4 of Figure 4).

1: procedure RUNWRAPPER(w, ¢)

2: r < EXECUTEUNTILRECEIVE(w, context(e))
3 e + execution(w)

4: SETINTERPERTER (e, interpreter(c))

5: if r # null A cardinality(r) # one then

6 for all 1 < < cardinality(r) do

7 e’ < REPLICATE(e)

8 RUN(interpreter(c), r, context(e'))

9 begin thread

10: RESUME(e’)

11 end thread

12: else

13: if 7 £ null then

14: RUN(interpreter(c), r, context(e))
15: RESUME(e)

Figure 4. Replicated Action Runner implementation

: procedure RESUME(e)

1

2 if remaining Edge Actions(e) = () then
3 F + VALIDATE(e, currEdge(e))

4 if F' = () then

5 ADVANCEEDGE(e)

6 else

7 ADAPT(e, F))

8 PLAN(e)

9: else
10: ADVANCESLICE(e)
11: if isEnded(e) then
12: 7 <— CREATERESULT(e)
13: DELIVERRESULT (interpreter(e),r)
14: ¢ < WRAPASREPLICATED (e, currSlice(e))
15: RUN (interpreter(e), ¢, context(e))

Figure 5. Resume Execution algorithm.

The procedure for adapting the state graph upon edge
failure is shown in Figure 6, where G stands for the state
graph, (u1,us) is the failed edge, and F' C uy is the set of
failed services. A state a is constructed to replace u;, without
including services from F'. Each failed service has a list of
alternatives, denoted by alts(f). Since not all alternatives
are equivalent, a helper function COMPAT (alts(f),uq) fil-
ters alts(f) to only services that can be invoked using the
already bound inputs (and other state) of wu;.

There are three possible constitutions of the alternative
state a. First, if all failed services in u; have invocable
alternatives, they will constitute a (line 6). Second (lines
7-13), if there is suitable alternative state u, to u; which
does not include any node from Ful. Ful is the union of all
sets F' for u; and all previous states (alternatives and the
original) that were considered in this position of the state
graph. Third, a will be an empty state distinct from any
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1: procedure ADAPT(G, (u1,us), F)

2: I+ {(uo,ul) S.t. (uo,ul) S E(G)}

3 O« {(ul,U3) S.t. (ul,U3) S E(G)}

4 [+ o0

5: minimize [

6 a < {chs(COMPAT(alts(f),u1)) st.f € F'}
7 if null € a then

8 a < null

9 for all u, € alts(uy) s.t. ug N Ful =0 do
10: a < COMPAT (ugq, u1)

11: if a # null A |a| = |u,| then

12: break

13: a < null

14: if ¢ = null then

15: a < {CREATEUNIQUEEMPTYNODE(G)}
16: else

17: ASSIGNINPUTS (a, u1)

18: [ < ADAPTEDGES(a, u1, )

19: [ < 1 + ADAPTEDGES(a, u;, O)
20: end minimize

21: CREATENOOP({(a, ug) s.t. (ug,u1) € I})
22: REMOVENODE(u;)

Figure 6. Algorithm for graph adaptation

other empty state already in G (line 15).

Once a has been computed the inputs of its services are
bound with values already present for inputs of u; (line 17).
The incoming (I) and outgoing edges (O) of u; originate
edges to and from a (lines 18-19), this time adapting the
assignments so that a’s inputs and outputs are used in place
of those of u;. ADAPTEDGES also verifies any additional
criteria that applies to edges of the state graph’. Depending
on the alternative chosen by chs, more or less edges may be
lost (1). For brevity, we omit exploration of these alternatives
with a minimize block (line 5) to symbolize that only the
side effects of the iteration that yielded the smallest / remain.
An efficient implementation of this scheme relies on specific
knowledge of the alternatives list properties.

A. Adapting a graph-based composition algorithm

We apply the aforementioned techniques to the composi-
tion algorithm proposed by Rodriguez-Mier et al. [9] within
the composition architecture of section IV. In this algorithm,
a composition problem consists of a set of services, a
set of known inputs (bound variables in the intermediate
description) and wanted outputs (unbound variables).

When processing a composition request, the first data
structure to be created is the dependency graph. An example
of such graph is shown in Figure 7, where variables vy, v, v3
are known inputs and wv;5 is the wanted output. Each node

9For example, if edges are determined by pre-/post-conditions, the
satisfaction of pre-conditions must be rechecked during edge adaptation

o
i
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Figure 7.

An example Service Dependency Graph.

1: function VALIDATE(e, (u1, u2))

2: F«10 > set of failed services
3: for all « € actions((u1,u2)) st. a : Copy A
target(a) € I(u1) do
4 if =isBound(target(a)) then
5 r < FINDREPLACEMENT (target(a), u1)
6 if 7 # null then
7: CoPY (r, target(a))
8 else
9: F < F U {provider(source(a))}
10: REVERTASSIGNMENTS (F)
11: return F'
Figure 8. Algorithm for execution validation.

S; in this graph corresponds to a service, which has a pair of
antecedent and consequent messages. Variables part of the
antecedent form the inputs of the node and those part of the
consequent, the outputs. Edges connect the output variables
in a layer with compatible inputs of the next layer: an output
o with type t,, and representation r, matches an input of type
t; and representation r; if, and only if, t, C t; Ar, = r;.
Special jump nodes (J) ensure that only nodes of neighboring
layers are connected. However, it is more efficient to create
jump nodes on demand while exploring the state graph.

If two nodes s; and s; have the same predecessors,
but sy successors are a subset of those of sy, so is said
to dominate so and s; can be removed. If instead, their
successors sets are equal, only one of them must remain
in the dependency graph. These removals, named Offfine
Service Compression [9], have no effect on the ability to
find the optimal composition path. However, at runtime, the
selected service may be unavailable, it might not contain an
hypermedia control, or it may miss some relevant output.
A topological sort of the dominates relation is used to
identify a representative node and compile a sorted list of
its alternatives allowing the implementation to forgo the
minimize block in Figure 6. Additionally, as all alternatives
have the same predecessors, COMPAT is always true.

The state graph for this composition algorithm is also a
layered graph, where a state is a combination of services
that share the same layer on the dependency graph. An
edge (u1,us2) exists between two states if, and only if]
all outputs of wy can be assigned from outputs of wu;.
The graph is materialized on demand during backward
search, and the Online Node Reduction optimization [9]
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Figure 10. Time decomposition for ComposIT and the Prototype.

detects and removes equivalent states. As in Offline Service
Compression, removed states are kept as alternatives of
the representative state, but no sorting is required.
Validation of an execution context against an edge
(u1,us), shown in Figure 8, checks for the inputs of uo that
were targets of a copy action but remained unbound (lines
3-4). For any unbound input, the algorithm attempts to find a
replacement source (lines 5-7), or otherwise adds the original
provider service to the set F' of failed services. Finally,
assignments from failed services are undone (line 10).

VI. EXPERIMENTS

A proof of concept implementation!® of the architecture
(section TV) and the results'! shown here are available
online. OpenJDK 1.8 was used, with Apache Jena 3.1.1 for
RDF processing, and Hipster [17] for the A* implementa-
tion. D* Lite [11] was implemented based on the original
paper, with an optimization to keep links to the successors of
a node that determined its rhs-value. All experiments were
performed in random order with 9 replications on a 2.5GHz
Intel i5 running Linux with a maximum JVM heap of 4 GB.

As in [9], the WSC’08 dataset [12] was used to compare
the performance of the adapted composition algorithm. To
analyze how failures impact performance, a failure on the
first invoked service for each one of the eight WSC’08 prob-
lems was induced. This resulted in a planning phase (where
the state graph was partially materialized) and a subsequent
re-planning. Figure 9 shows the re-planning times of A* and
D* Lite. These times do not include the validation and adap-
tation procedures, which are performed independently from
the search algorithms. D* Lite re-planning averages range

10https://bitbucket.org/alexishuf/unserved-testbench/
https://bitbucket.org/alexishuf/unserved-testbench-iscc2017/
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from 0.578 (problem 6) to 0.993 (problem 2), in the best case
(problem 6) requiring only 37% of the time of a full A* re-
plan. Problems 1, 2 and 5 presented overlapping confidence
intervals, indicating no conclusive advantage for D* Lite.
These problems have short composition paths (I = 4,4, 6)
and simple state graphs (states/edges = 5/4,5/4,10/9).
In contrast, problem 3 is long (I = 24, s/e = 25/24), 6 and
7 are complex (I = 8,13, s/e = 17/15,23/19), and problem
8 is both long and slightly complex (I = 21, s/e = 51/57).
Figure 10 shows a breakdown of times for both our
prototype and ComposIT [9]. Adding the three phases,
averages for our prototype ranged from 68% to 92% of those
from ComposlT, except problem 8 which had an overhead
of 59% with its 8120 services that imposed high memory
usage (due to the more verbose intermediate description) and
increased graph construction by 199%. For other problems,
memory was not an issue and the overhead of the interme-
diate description and executable state graph was surpassed
by improvements on construction and optimization phases.
Averages for construction, mainly due to computing closures
of superclasses instead of a match table, ranged from 63%
to 78% of ComposIT averages for half of the problems (in
addition to 8, overheads between 1% and 27% were observed
for problems 1,2 and 4). On Offline Service Compression,
storing forward adjacencies on the dependency graph caused
the averages to be between 26% and 45% of ComposIT.
Finally the Prototype was evaluated with the benchmark
used by Pragmatic Proof (PP) [8], the only related work
to support HATEOAS, and the results are displayed in
Figure 11. To make the comparison against PP fair, we
discounted the N3 reasoner (EYE) spawn time (36.32 ms
in average), parsing of descriptions and the N3 proof con-
version into a workflow. For the main scenarios described
in [8], with 1 and 3 I/O variables, the 95% confidence
interval ceases overlapping when chain length surpasses 64
for one variable and 4 for 3 variables. On the dummies
scenario, in which the actual composition has a chain length
of 32 with one I/O variable, the intersection occurs for
chains smaller than 16 or equal to 64. In addition to shorter
absolute times, our prototype is less sensitive to number of
I/O variables than PP. For PP, taking [ as the chain length
and ¢; as the reasoning time with i I/Os, logs(ts — t1) =
(1.63 £0.12)l0g2(1)? + (7.28 0.12)loga (1) + 14 0.01 with

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI:|10.1109/iscc.2017.8024654



https://doi.org/10.1109/iscc.2017.8024654

95% confidence. No similar linear or quadratic model fits the
data from our prototype, as experimental error dominates.

VII. CONCLUSION

In service oriented computing, research on automated
service composition is often restricted to only SOAP, only
REST or only Publish/Subscribe services. While there are
proposals for integration of SOAP and REST [3]-[6] and
for Publish/Subscribe and SOAP [7], the simultaneous in-
tegration of all three remained an open issue. We proposed
a composition architecture and an adaptation technique to
support these interaction models. The results show that the
prototype was faster for 7 out of 8 scenarios when compared
with ComposIT [9], and that absolute values are tolerable for
most non time-critical applications. When comparing against
[8], we observed large speed improvements on all scenarios
and asserted that our prototype is less sensitive to the
number of I/O variables. The re-planning time improvement
also hints at promising performance in long-running mixed
Publish/Subscribe and HATEOAS compositions.

The re-planning approach only applies to graph-based
composition algorithms, and the gains obtained through D*
Lite require an algorithm that reduces service composition
to path-finding. Another limitation is that no compensation
actions are applied if the execution backtracks. Finally,
the replication algorithm spawns totally isolated execution
threads that have no means of communication. Any compo-
sition that would require communication between replicated
threads must have the requirements split in two parts, auto-
matically composed, but with join code manually written to
start the second composition from results of the first.

In future work we intend to add the ability of documenting
the compensation needs of services to the intermediate
language and to the algorithm, so that backtracked sub-paths
can be compensated, if needed. Another related possibility
is to model application state and consider action semantics
during service composition. One challenging scenario for
actions and state is device control in the Internet of Things,
in which physical state is of key concern to applications.
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