
Scalable precondition-aware service composition with SPARQL

Alexis Huf, Frank Siqueira
Graduate Program in Computer Science, Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, Brazil

alexis.huf@posgrad.ufsc.br, frank.siqueira@ufsc.br

Abstract—Functional service composition builds a plan that
fulfills some user-provided goal using available services. The
literature describes several approaches for description of ser-
vices and goals, with different levels of expressiveness, ranging
from the ones based only on inputs and outputs to the more
expressive logics-based solutions. The former provide better
scalability and performance, while the latter allow for increased
expressivity in preconditions and effects of both services and
goals. The approach proposed in this paper aims to achieve
a balance between expressivity and performance of functional
service composition. To this end, a graph-based composition
algorithm is extended to support preconditions and effects de-
scribed with a small subset of SPARQL. Experiments compare
the performance of this extended algorithm with two state-
of-the-art algorithms that support preconditions and effects
and demonstrate better scalability. In one case, a maximum
speedup of 29 times was achieved for the problems that could
be expressed with the SPARQL subset. In another, problems
that a state-of-the-art algorithm could not solve after 5 minutes
where solved in seconds.

Keywords-service composition, automated planning, precon-
ditions and effects, semantic web

I. INTRODUCTION

Most service description languages currently in use model
services by their name, inputs and outputs [1]. For stub gen-
eration and manual composition of these services into new
services and applications, this level of detail is sufficient.
If service composition is done by a specialist, any missing
information from the descriptions can be obtained from
human-readable documentation or by testing invocations of
the service.

If the composition is performed by an algorithm that
seeks fulfillment of functional requirements, a process called
automatic functional composition [2], then issues may arise
due to low expressivity of descriptions. As a first example,
consider a service called Pay that takes an Order as input
and returns a Receipt as output. If requested to Pay an
Order, a composition algorithm is able to discover and
invoke such service. But if it is requested to Ship an Order,
an issue arises: How does the composition algorithm will
determine if it needs to pay an order before shipping it?
Since the order may have already been paid, calling Pay
again could result in an error. As a second example, consider
a service that receives a Location (city or neighborhood)
and a BusinessSector and returns a list of Business. Are

the returned businesses located there, just operate in the
location, or were founded by a resident of the location? Do
the returned businesses operate on the given sector or are
they suppliers to other businesses in it?

The issues identified above can be solved by formalizing
the preconditions and effects of services so that they can
be used by a composition algorithm. In the first case, “the
Receipt is for the Order” is an effect of Pay and “the Order
has a Receipt” is a precondition of Ship. In the second
example, the effect is “Business operating on Sector and
located in Location”. While presented here informally, such
preconditions and effects must be formally described to be
processed by the composition algorithm.

There are efforts for service discovery based on pre-
conditions and effects, among other attributes of services
[3]. There are also approaches focusing on describing or
inferring the relation between Inputs and Outputs (I/Os) of
a service [4], [5]. Such relations can then be used as precon-
ditions and effects by composition algorithms proposed in
the literature [6], [7], [8], [9]. However, when experiments
involving such composition algorithms are reported, the
magnitude of composition times is often higher than that
of times observed for I/O-only composition algorithms [10],
[11], despite experimental scenarios with few services. An-
other issue is that approaches that employ general-purpose
reasoners [8], [7] generate logical problems with a specific
structure (e.g., in [8] a service is an implication with a
description of the HTTP request as antecedent and of the
response as the consequent), for which general-purpose
reasoners may not be optimized.

The goal of this paper is to design a composition algo-
rithm – and associated description for preconditions and
effects – that achieves performance similar to I/O-only
composition algorithms. This algorithm is implemented and
evaluated in the Unserved service composition architecture
(originally designed for composition of heterogeneous ser-
vices), described in our previous work [12].

This paper presents an efficient composition algorithm
that supports preconditions and effects containing binary
predicates (P (x, y)), conjunction and disjunction. This algo-
rithm is obtained extending the I/O-only algorithm proposed
in [12]. Datasets that were used by related work for eval-
uation are converted into Unserved descriptions, allowing

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

comparison of performance results.
The remainder of this paper is structured as follows.

Section II surveys state-of-the-art composition algorithms
that consider preconditions and effects. An overview of
the Unserved architecture is given in Section III and the
precondition-aware algorithm is described in Section IV.
Evaluation experiments are described in Section V, and the
concluding remarks are given in Section VI.

II. RELATED WORK

Mohr et al. [6] propose a composition algorithm that
supports a subset of First-Order Logic (FOL) to describe
preconditions and effects. This subset does not support
disjunction (∨) nor quantification. A global knowledge base,
limited to Horn clauses1 can be provided as input along with
service descriptions. The composition algorithm explores
a graph of services, starting from the goal formula. Any
service whose post-conditions partially satisfy preconditions
is a predecessor node and retains unsatisfied preconditions of
the successor as their own. This rule defines a graph in which
a path from the goal node to a node without unsatisfied
preconditions is a solution.

Alves et al. [7] tackle the problem of composing non-
deterministic services, whose actual effects may be desirable
or not. Preconditions are modeled as conjunction and effects
as the disjunction of all possible effects, each modeled by a
conjunction. The algorithm reduces the composition problem
to a non-deterministic planning problem, which is then re-
duced to the boolean satisfiability problem (SAT). The plan-
ning output is a contingency tree which determines how to
proceed if, during execution, a service produces undesirable
effects. This approach allows generating a Business Process
Execution Language (BPEL) process that superimposes all
alternative plans. The drawback of this approach is that
all combined failure possibilities must be explored on the
contingency tree, even if few or no failures occur.

Some approaches [8], [9] for service composition de-
scribe services using the Resource Description Framework
(RDF). One of the advantages of RDF is the ability to
refer to ontologies when conceptually describing service
I/Os. RDF structures data as a graph, defined by a set
of subject-predicate-object triples that are analogous to
P (subject, object) in FOL. Other FOL-like constructs, such
as disjunction and quantified variables, can be expressed
using RDF extensions, such as N3Logic [13], or through
SPARQL RDF Query Language (SPARQL)2 queries. While
both approaches can be used to describe preconditions and
effects of services, SPARQL has the advantage of being the
standard querying language for RDF [14].

Verborgh et al. [8] propose an algorithm that interleaves
planning and execution in order to support the Hypermedia

1Horn clauses have the form p1 ∧ . . . ∧ pn → q and are the basis
for logic programming.

2http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

As The Engine Of Application State (HATEOAS) constraint
of the Representational State Transfer (REST) architectural
style3 [15]. Planning is reduced to theorem proving under
N3Logic [13] by modeling services as implications. Precon-
ditions and effects are restricted to conjunction of binary
predicates (i.e., triple patterns such as ?x a foaf:Person).
After every interaction with a service, results are added
to a knowledge base and the proof is re-done, yielding
an updated plan. The authors themselves constructed a
benchmark, which consists in linking available services in
an invocation chain. However, service I/Os are described
in such a way that each service has only a single suitable
predecessor, yielding a linear search space.

Serrano et al. [9] propose a middleware where every
service is described as an RDF graph, with inputs and
outputs of the service mapped to nodes of this graph.
The end user requests a SPARQL query, which yields a
desired graph. Employing graph isomorphism, any service
whose graph intersects with the desired graph is selected.
If the selected services have unknown inputs, the algorithm
expands the desired graph to satisfy them and recurses until
the desired graph is completely satisfied. The level of support
of preconditions and effects in this approach is similar to
that in [8]. The authors evaluate several properties of the
middleware and demonstrate its applicability, but do not
evaluate the performance of a prototype.

Most functional service composition approaches that do
consider preconditions and effects, do so by reducing com-
position to general-purpose theorem provers or planners, the
only exception being [6]. This is often accompanied by
two difficulties: (1) efficient interaction with the general-
purpose tool, that may require spawning a new process,
feeding it with input data and parsing its output; and
(2) exploring search space reduction strategies specific to
the particular encoding of the composition problem as a
logic problem. Another observation is that each approach
uses a distinct benchmark, making direct comparisons of
performance difficult. Nevertheless, by the description of
benchmarks and the provided results, it can be concluded
that composition considering preconditions and effects is
more computationally challenging than I/O-only composi-
tion [10]. These observations motivated the methodology
adopted in this paper of adding support for preconditions
and effects to an efficient I/O-only algorithm.

III. UNSERVED

The composition algorithm presented in this paper was
implemented inside the Unserved software architecture,
whose main goal is to support composition (i.e., planning
and execution) of heterogeneous services, mainly SOAP,

3Under such constraint, the client of a RESTful service must determine
its next action from hypermedia controls contained in the representation
received after interacting with a resource.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

Repository
Service

Descriptions Composer Interpreter
Workflow slice

Partial results
Goals

Figure 1: Overview of service composition under Unserved.

RESTful and event-oriented services [12]. This platform pro-
vides an abstraction on service interaction and interpretation
of service results, which makes it a suitable starting point for
comparing different composition algorithms. Another benefit
of this platform is that it already implements some state-of-
the-art service composition algorithms, such as ComposIT
[10] and some of its variants [11]. Figure 1 provides an
overview of how composition is done in Unserved. Service
descriptions are transformed into an intermediate description
and stored, as RDF, into a service repository. A composer
synthesizes a workflow using those services to achieve user-
provided goals. The workflow is split into slices, allowing
the composer to change it during execution if a service fails
to deliver an expected result.

The main composition algorithm in the Unserved imple-
mentation is an extension of the ComposIT [10] algorithm.
ComposIT models a service composition as a path within
a state graph, derived from the relations between I/Os of
services. Its main innovations were optimizations to prune
the graph before applying a path-finding algorithm. Its
implementation under Unserved retains the same rules for
forming the state graphs and to prune it. However, it was
extended to support features of the architecture, such as
adapting the plan during execution.

IV. PRECONDITION-AWARE COMPOSITION

Preconditions and effects of services are modeled in the
intermediate description as ASK SPARQL queries and are en-
coded in RDF using SPARQL Inferencing Notation (SPIN)4.
For preconditions, all variables in the query must be inputs
of the service, whereas, for effects, both inputs and outputs
are allowed. The SPARQL queries are treated as if under
the RDF Schema (RDFS) entailment regime. This ensures
that, like in most automated functional service composition
literature that employs semantics [1], superclass/subclass are
considered when checking satisfiability of preconditions.

Similarly to the ComposIT-based composition algorithm
presented in [12], the precondition-aware algorithm follows
the same general steps:

1) from the known inputs and assumed preconditions,
build a layered graph of service dependencies;

2) remove services from the dependency graph which are
not required to obtain any requested output or effect;

3) remove redundant services from the graph, storing
them as alternatives to explore during adaptation;

4) build a goal state representing all goals being achieved
and a start state representing all known inputs;

4http://spinrdf.org/spin.html

1: procedure BUILDDEPGRAPH(Ik,Φk, Ow,Ψw, ζI)
2: start← 〈(∅, ∅) � (Ik,Φk)〉
3: i← 0, L0 = {start}, ζO ← ∅, ζΨ ← ∅
4: INDEXOUTPUTSANDEFFECTS(ζo, ζΨ, L0)
5: while ¬SATISFIED(ζO, ζΨ, 〈(Ow,Φw) � (∅, ∅)〉) do
6: L+ ←

⋃i
j=0 Lj

7: i← i+ 1
8: Li ← PARTIALYLSTATISFIEDBY(ζI , Li)
9: Li ← Li \(L∗∪{c s.t. ¬Satisfied(ζO, ζΨ, c)})

10: INDEXOUTPUTSANDEFFECTS(ζO, ζΨ, Li)

Figure 2: Dependency graph construction.

5) find a path from this goal state to the start state, where
each state in between is a set of services originating
from the same layer in the dependency graph.

Steps 2 and 3 will not be discussed in detail since they
correspond to pruning strategies based purely on the set of
predecessors and successors of a node in the graph [10].
Due to this generality, the same pruning strategy can be
applied to IO-only and to the precondition-aware algorithm.
The service dependency graph is built according to the
procedure in Figure 2, from the set of known inputs (Ik),
preconditions already satisfied (Φk), wanted outputs (Ow),
wanted effects (Ψw) and service input index (ζI). This latter
index acts as an interface to the service repository, providing
the set of services that have at least one input satisfied by
a given output. In the algorithm, a service is represented as
〈(Inputs, Preconditions) � (Outputs, Effects)〉.

The dependency graph is forward-built, layer by layer,
from the start node. In addition to ζI , two indices are queried
and built during the process: ζO gives the set of services
whose outputs satisfy a particular input and ζΨ gives the
set of services whose effects satisfy a given precondition.
The SATISFIED function determines if all inputs and precon-
ditions of a service are satisfiable using the services from
previous layers. When a service has multiple preconditions,
all of them must be satisfied. In the case of preconditions
employing UNION, at least one branch needs to be satisfied.
The edges between services in the dependency graph are
derived from the results of querying ζI and ζΨ with each
input and precondition of a service.

The states graph, like the dependency graph, is also
layered. A state S = 〈i, Ŝ, S̊〉 at layer i consists of a set
of nodes (Ŝ ⊆ L∗

i) and equivalence sets (̊(S)) between I/Os
of the nodes. L∗

i is a split into three types of nodes: service
nodes at layer Li of the dependency graph; jump nodes with
the form 〈(O,Ψ) � (O,Ψ)〉 that refer to services in any
Lj with j < i; and indexed nodes which are duplicates
of the previous two types introduced to avoid violations of
equivalence sets. The first two types of nodes are denoted
by L+

i . The equivalence sets determine which I/Os are
known to share the same value during execution. An edge

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

1: procedure PREDECESSORS(〈i, Ŝ, S̊〉)
2: E ← ∅
3: for mφ ∈ {{ϕ � (ψ ∈ Ψ(s), s ∈ L+

i−1)}} do
4: m′

v ← ∅
5: for (ϕ � (ψ, s = 〈(I,Φ) � (O,Ψ)〉)) ∈ mϕ do
6: if s is a jump node then
7: for v ∈ vars(ϕ) do
8: m′

v(v)← (v, s)

9: else
10: for (v, u) ∈ unify(ϕ, ψ) do
11: if u ∈ O then
12: m′

v(v)← (u, s)

13: F ← inputs(Ŝ) \ keys(mv)
14: for mF ∈ {{v ∈ F � (u, s)}} do
15: mv ← m′

v ∪mF

16: T̂ ′ ← {s s.t. ∃(x � (y, s)) ∈ (mv ∪mϕ)}
17: T̊ ← Equivalences(S̊,mϕ,mv)
18: T̂ ← T̂ ′

19: for t ∈ T̂ ′ do
20: for (v, j) ∈ CONFLICTS(t, S̊,mv) do
21: T̂ ← ηj(t)
22: mv(v)← ηj(mv(v))

23: nT ← |t ∈ T̂ s.t. t is not a jump node|
24: E ← (〈i− 1, T̂ , T̊ 〉, 〈i, Ŝ, S̊〉, 〈nT ,mv,mϕ〉)

return E

Figure 3: Compute edges to predecessor states.

(T, S, nT ,mv,mϕ) from T to S contains a cost attribute nT

and two mappings: mv maps every input in Ŝ to a output
in T̂ , while mϕ maps every precondition in Ŝ to an effect
in T̂ .

Figure 3 shows the procedure to obtain edges to a state
from all its direct predecessors. The first step (line 2) is to
generate all mappings from all preconditions of S to some
effect of a service at a previous layer, using jump nodes as
necessary. A mapping mϕ also implies a mapping m′

v of
some I/Os (lines 4–12). For non-jump nodes, the mappings
are determined by Prolog-like unification of the precondition
with the effect. Since m′

v may be undefined for some inputs
of S, possible mappings for those inputs are explored and
integrated into the final mv (lines 13-15). When F = ∅, the
single possible value for mF is ∅.

The final step to obtaining an edge from a predecessor
to the given successor state is to update the equivalence
sets T̊ and to split nodes into indexed nodes, if required
by S̊. Equivalences in T̊ are implied by unification between
preconditions and effects in mϕ and by transitivity in S̊: if
equivalent inputs a and b map to c and d, all four I/Os will
belong to the same equivalence class. If a single output a
provided by a node s is mapped by mv from two inputs
that are distinct in S̊, then s must be split and one of
the inputs must map to the output η1(a) of the new node

η1(s). As this situation may occur with n equivalent classes
CONFLICTS(r)eturns the input that must be re-mapped and
a counter j that identifies to which of the n − 1 splits the
input must be mapped.

V. EXPERIMENTS

For evaluating the performance of the precondition-aware
composition algorithm, the available datasets employed by
state-of-the-art precondition-aware approaches were used.
Among all approaches discussed in Section II, only Con-
figMate [6] and Pragmatic Proof [8] had their implemen-
tations and datasets available. Our algorithm is compared
with ConfigMate using the composition problems that do
not rely on negation support. Experiments comparing with
PragmaticProof employ an extension of the Web Services
Challenge 2008 (WSC’08) synthetic benchmark [16] that
includes preconditions and effects. All experiments5 were
run on an Intel i5 at 2.5GHz with 8GB of RAM.

A. WSC’08

The WSC’08 dataset by Bansal et al. [16] is often used
as a benchmark for I/O-only service composition algorithms
[10], [17], [11]. It comprises 8 synthetic problems, each con-
sisting of a type taxonomy, a set of known inputs described
by their types, a set of wanted outputs, also described by
their types, and a service repository, with services described
by their inputs and outputs. The goal of each problem is to
chain the available services, according to I/O compatibility,
to obtain the wanted outputs from the known inputs.

To include preconditions and effects, three new variants
of the dataset were added. The first, called 2x I/Os, serves
as the basis for others and consists in shadowing all I/Os,
preserving the problem structure. For every input or output
variable x with type t of service s, using a renaming function
η, the service s will receive an new I/O η(x) with type η(t).
The type taxonomy is also shadowed: for any superclass
u in the original taxonomy, η(t) will be a subclass of
η(u)′. The second variant, Conjunction (single), is obtained
adding a precondition P (x1, η(x1))∧ · · · ∧P (xn, η(xn)) to
every service s with inputs (or outputs) x1, . . . , xn, where
P is a constant predicate. The third variant, Conjunction
(shadow) is obtained in the same manner, but using a
different predicate Pxi

for every input (or output) xi.
The WSC’08 benchmark, as well as the extensions above,

can also be expressed as problems in N3 Logic, making the
Pragmatic Proof algorithm [8] applicable. Figure 4 compares
the time required to plan a service composition using the
EYE reasoner (as used by the Pragmatic Proof algorithm [8])
to the time required by the Unserved+SPARQL algorithm.
Every combination of Scenario, problem and algorithm had
the time measured 9 times. Furthermore, the time required to
spawn the EYE process and to parse service is not included,

5Scripts and data at https://bitbucket.org/alexishuf/sac-2019-experiments/

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

8
2
.0

m
s

1
.0

s

9
6
.0

m
s

2
.6

s

1
4
8
.0

m
s

4
.5

s

1
3
9
.0

m
s

2
.1

s

1
5
2
.0

m
s

1
1
.0

s

1
.6

s
2
.3

m
in

2
9
1
.0

m
s2
7
.5

s

6
0
2
.0

m
s

4
0
.3

s

9
0
.0

m
s
1
9
.4

s

1
3
0
.0

m
s

2
0
7
.0

m
s

4
.3

m
in

2
1
0
.0

m
s

2
.3

m
in

2
2
3
.0

m
s

3
.6

s

8
1
7
.0

m
s

1
.0

s

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

1
6
4
.0

m
s

2
.6

s

2
2
6
.0

m
s

6
.8

s

3
3
5
.0

m
s

1
0
.1

s

6
0
6
.0

m
s

4
.8

s

6
9
5
.0

m
s

1
8
.1

s

1
3
.6

s

1
.2

s
1
.0

m
in

2
.8

s
1
.6

m
in

ti
m

e
o
u

t

1
7
3
.0

m
s

1
0
.7

s

2
4
4
.0

m
s

4
0
1
.0

m
s

2
.0

m
in

6
2
6
.0

m
s

2
4
.9

s

4
4
5
.0

m
s

1
5
.1

s

1
.4

s

3
.2

s

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

ti
m

e
o
u

t

1x I/Os 2x I/Os Conjunction (single) Conjunction (shadow)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

100

1000

10000

WSC'08 Problem

C
o

m
p

o
si

ti
o

n
 T

im
e

(m
s)

Algorithm

EYE
Unserved+SPARQL

Figure 4: Composition Time in precondition-aware scenarios derived from WSC’08 for Unserved+SPARQL and for the EYE
reasoner used in Pragmatic Proof [8].

discovery

mma

mma−medium

mma−large

0 200 400

Time (ms)

S
ce

n
ar

io

Algorithm ConfigMate Unserved+SPARQL

Figure 5: Composition time of ConfigMate (first solution)
and Unserved+SPARQL.

since these steps are avoided in the Unserved+SPARQL
implementation.

Figure 4 shows that unlike Unserved+SPARQL, for many
scenarios, the EYE reasoner [8] is unable to find a solution
within 5 minutes. A second important difference is that EYE
is slower when the I/Os are shadowed (2x I/Os) than when
predicates connect the inputs and the outputs (Conjunction
(single)). Unserved+SPARQL is faster in all scenarios for
all problems. The smallest speedup is of 7.85 for problem 4
in scenario Conjunction (single) and the largest is 1234.45
for problem 3 in scenario 2x I/Os. Across all scenarios, the
distribution of speedups has a long tail to the right: the
median speedup is 39.76, with 5% of the problems below
12.53 and 5% above 642.42. The right tail is caused by large
speedups for problems that yield large service chains from
small repositories in the 2x I/Os and Conjunction (shadow)
scenarios, which were problematic for EYE. Nevertheless,
speedups on these two scenarios are, respectively, 51.12 and
28.27 times on average.

B. ConfigMate

Among the problems present in the benchmark used in the
proposal of the ConfigMate algorithm [6], only four could be
successfully converted to Unserved descriptions. The other
problems use features such as negation and rules, which are
not supported by our proposed algorithm.

Figure 5 compares the original implementation of Con-
figMate (without the graphical user interface) with the
precondition-aware composition under Unserved for these
four problems. The ComposIT algorithm alone is not able
to handle these composition problems and, due to this
limitation, it is not considered in this evaluation. Problem
discovery contains 9 services without correspondence
to a practical problem. Problems mma, mma-medium and
mma-large model a travel ticket purchase scenario, vary-
ing in the number of services (2, 102 and 1002, respectively).
For all problems, the Unserved implementation had better
performance, with speedups (Tconfigmate

Tunserved
), respectively, of

12.30, 18.51, 29.22 and 12.32.

VI. CONCLUSIONS

This paper presented a precondition-aware composition
algorithm as an extension of the ComposIT-based algorithm
implemented in the Unserved architecture. Preconditions and
effects are modeled as SPARQL ASK queries. The planning
algorithm provides support for conjunction (.) and pred-
icates (?x :p ?y), while adaptive execution by Unserved
achieves disjunction (UNION) support. We extended an I/O-
only composition algorithm to create service compositions
that achieve goals expressed with conjunction and disjunc-
tion of binary predicates. Earlier algorithms that achieve sim-
ilar expressivity [6], [8], [9], [7] required more processing
time or had no implementation able to handle large scenarios
such as the WSC’08 benchmark.

When compared with state-of-the-art approaches handling
preconditions and effects, this algorithm presented better
scalability. In comparison with [6], speedups between 12.3
and 29.22 times were achieved for the problems that could
be converted. In experiments using the WSC’08 benchmark,
composition times remained tractable in all problems for all
benchmark variants. In contrast, some WSC problems, when
converted to N3 descriptions could not be solved under 5
minutes with the best reasoner used in [8]. Furthermore, the
Unserved+SPARQL algorithm was faster in all problems of
all scenarios, with speedups of at least 7.85.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

A limitation of this work is that the flexibility provided
by a complete logic framework, such as linear logic [18]
or Answer Set Programming [19], is lost in favor of
performance. A second limitation is that compensation of
past service invocations during adaptation in the Unserved
architecture is still not implemented. Two main research
directions focused on the Unserved+SPARQL algorithm are
the inclusion of negation and inclusion of arbitrary rules
for inference during composition planning and execution.
These two features, present in ConfigMate, enable tackling
additional composition problems.

While this work improves the viability of precondition-
aware automatic service composition, important questions
remain unanswered. First, none of the algorithms evaluated
generate constructs such as looping and recursion as part
of the composition plans. Second, most research on service
composition is evaluated using hand-crafted or mechanically
generated composition problems. Of special interest are
benchmarks with a stronger grounding in real use cases of
composition. Another research opportunity is to use precon-
dition/effects extraction techniques, such as [5], to improve
the correctness of service composition given incomplete
service descriptions.

ACKNOWLEDGEMENTS

This study was partially financed by the Brazilian research
funding agencies CAPES and FAPESC.

REFERENCES

[1] Y.-Y. Fanjiang, Y. Syu, S.-P. Ma, and J.-Y. Kuo, “An overview
and classification of service description approaches in auto-
mated service composition research,” IEEE Transactions on
Services Computing, vol. 10, no. 2, pp. 176–189, Mar. 2017.

[2] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne,
and X. Xu, “Web services composition: A decade’s overview,”
Information Sciences, vol. 280, pp. 218–238, october 2014.

[3] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bern-
stein, “Semantic web service search: A brief survey,” KI -
Künstliche Intelligenz, vol. 30, no. 2, pp. 139–147, June 2016.

[4] M. L. Sbodio, D. Martin, and C. Moulin, “Discovering Se-
mantic Web services using SPARQL and intelligent agents,”
Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 8, no. 4, pp. 310–328, 2010.

[5] M. L. Mouhoub, D. Grigori, and M. Manouvrier, “Towards
an automatic enrichment of semantic web services descrip-
tions,” in On the Move to Meaningful Internet Systems. OTM
2017 Conferences: Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2017, Rhodes, Greece, October
23-27, 2017, Proceedings, Part I. Cham, Switzerland:
Springer-Verlag, 2017, pp. 681–697.

[6] F. Mohr, A. Jungmann, and H. K. Büning, “Automated
Online Service Composition,” in 2015 IEEE International
Conference on Services Computing. Washington, USA:
IEEE, 2015, pp. 57–64.

[7] J. Alves, J. Marchi, R. Fileto, and M. A. R. Dantas, “Re-
silient composition of Web services through nondeterministic
planning,” in 2016 IEEE Symposium on Computers and
Communication (ISCC). Washington, USA: IEEE, 2016,
pp. 895–900.

[8] R. Verborgh, D. Arndt, S. Van Hoecke, J. De Roo, G. Mels,
T. Steiner, and J. Gabarro, “The pragmatic proof: Hypermedia
API composition and execution,” Theory and Practice of
Logic Programming, vol. 17, no. 1, pp. 1–48, 2017.

[9] D. Serrano, E. Stroulia, D. Lau, and T. Ng, “Linked REST
APIs: A Middleware for Semantic REST API Integration,”
in 2017 IEEE International Conference on Web Services
(ICWS). Washington, USA: IEEE, jun 2017, pp. 138–145.

[10] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mu-
cientes, “An Integrated Semantic Web Service Discovery and
Composition Framework,” IEEE Transactions on Services
Computing, vol. 9, no. 4, pp. 537–550, 2016.

[11] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A Scalable
and Approximate Mechanism for Web Service Composition,”
in 2015 IEEE International Conference on Web Services.
Washington, USA: IEEE, 2015, pp. 9–16.

[12] A. Huf, I. Salvadori, and F. Siqueira, “Planning and ex-
ecution of heterogeneous service compositions,” in 2017
IEEE Symposium on Computers and Communications (ISCC).
Washington, USA: IEEE, Jul. 2017, pp. 987–993.

[13] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and
J. Hendler, “N3Logic: A logical framework for the World
Wide Web,” Theory and Practice of Logic Programming,
vol. 8, no. 03, pp. 249–269, 2008.

[14] M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and S. Sakr,
“Rdf data storage and query processing schemes: A survey,”
ACM Comput. Surv., vol. 51, no. 4, pp. 84:1–84:36, Sep. 2018.

[15] R. T. Fielding and R. N. Taylor, “Principled Design of
the Modern Web Architecture,” ACM Transactions Internet
Technology, vol. 2, no. 2, pp. 115–150, 2002.

[16] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise,
and M. C. Jaeger, “WSC-08: Continuing the Web Services
Challenge,” in 2008 10th IEEE Conference on E-Commerce
Technology and the Fifth IEEE Conference on Enterprise
Computing, E-Commerce and E-Services. Washington, USA:
IEEE, 2008, pp. 351–354.

[17] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Evolutionary
computation for automatic web service composition: an indi-
rect representation approach,” Journal of Heuristics, vol. 24,
no. 3, pp. 425–456, Jun 2018.

[18] X. Zhao, E. Liu, G. J. Clapworthy, N. Ye, and Y. Lu,
“RESTful web service composition: Extracting a process
model from Linear Logic theorem proving,” in 2011 7th
International Conference on Next Generation Web Services
Practices. Washington, USA: IEEE, october 2011, pp. 398–
403.

[19] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and
H. Tompits, “Combining answer set programming with de-
scription logics for the semantic web,” Artificial Intelligence,
vol. 172, no. 12, pp. 1495 – 1539, 2008.

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ISCC47284.2019.8969659

https://doi.org/10.1109/ISCC47284.2019.8969659

