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Abstract—Television broadcast production facilities capture,
manage, edit, handle, and broadcast audiovisual content by
using a wide array of specialized equipment and software.
The complex workflow in this environment demands interop-
erability between devices, but vendor-neutral protocols do not
provide access to a significant amount of functionality. This
paper proposes the adoption of a Service-Oriented Architecture
for controlling broadcasting equipment, addressing difficulties
specific to this environment such as the prevalence of non-Web
Services, embedded devices, and constrained computational
resources. The proposed solution is centered on a semantic
service registry, which is able to compose mediators and
produces stubs in response to service selection requests. The
prototype registry is experimentally evaluated in simulated
scenarios, focusing on how size and complexity of the broadcast
facility impact on response times.

Keywords-service composition; broadcast automation; system
integration; OWL-S.

I. INTRODUCTION

A television broadcast facility [1], [2] has as its main
purpose to continuously broadcast audiovisual content using
ground based antennas, satellites or cables. Many of these
facilities not only retransmit signals from a television net-
work, but also include locally produced content, such as
news programs or advertisements. To produce the television
broadcast as scheduled, these facilities employ several types
of specific-purpose devices and software that capture, edit,
store and manage both live video signals and video material.

As an example, consider the production of a live news
program. The anchor will usually introduce a particular news
item before the broadcast video signal changes from the
studio to a previously produced report. In more detail, the
anchor will be reading the story text from a teleprompter,
which may have been recently edited by a journalist in
another room. The report, most likely a file on a storage
server, must be transferred to a playout device to transform
it into a video signal. The switch from the anchor’s video
signal to the report video signal is done by the master
switcher, which may also apply a transition effect and
perform adjustments on audio and video.

These processes, or workflows, in broadcasting jargon,
are ultimately specific to each broadcaster and can be rather
complex. Usually workflows combine human interaction,
device-to-device control, and automation software, the last

two respectively resembling static, vendor-defined choreog-
raphy and orchestration. Since a large portion of the devices
offer only proprietary control protocols, the workflow itself
may become more complex, as well as its formal definition.

This heterogeneity in device control protocols, embedded
software, and the overall constrained computational re-
sources, are challenges to the direct application of most SOA
technologies. With these challenges in mind, we propose
a service repository capable of selecting and composing
services. An ontology based on OWL-S [3] is proposed to
model concepts and elements that deal with heterogeneity.
A distinct feature is that not only Web Services are allowed,
but also services accessible through proprietary protocols
or serial communication lines. To allow for heterogeneity in
data representations, in protocols, and in the offered services,
the registry composes data and service mediators into stubs,
which are handed as replies to service queries.

This paper proposes the adoption of a Service Oriented
Architecture, centered on a service repository, for the televi-
sion broadcast environment. The applicability of the pro-
posed architecture is evaluated with respect to how size
and complexity of a broadcasting facility impact the time
required by the repository to compose stubs. The proposed
solution aims to tackle challenges - such as heterogeneity,
legacy protocols, and constrained resources - present in the
broadcasting scenario, as well as in small office and home
automation.

The remainder of this paper is structured as follows. In
section II, a brief description of broadcasting automation
and related work from the broadcasting field is presented.
Challenges specific to this environment are described in sec-
tion III. Related work from the SOA literature is presented
in section IV, and the proposed integration architecture is
described in section V. Experiments are discussed in sec-
tion VI, followed by the concluding remarks in section VII.

II. BROADCASTING AUTOMATION AND PROTOCOLS

Automation in broadcasting environments is not a novel
concept. Early systems, like the one described in [4] focused
on automating sequences of video signal switching and
equipment triggers. Under these systems, equipment control
was performed by electrical pulses and integration consisted
of wiring the devices and occasional adapter circuits. The
control technology evolved from wiring to protocols over
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serial lines (such as the ones described in [5]), and later,
to protocols over IP networks. However, control over serial
ports and electrical pulses, popularly known as GPI (General
Purpose Input), are still used on most new equipment.
Most of the protocols used in broadcasting production
were designed by a single vendor for use in its own prod-
ucts. As a requirement for integrating equipment from two
vendors, one of the vendors has to implement the protocol
of its counterpart. Since this is a costly approach, when
the first NCS (Newsroom Computer System) were about to
become largely available, the Associated Press (developer
of the ENPS NCS) proposed the development of the MOS
(Media Object Server) protocol [6] as an open protocol,
with participation of all major vendors. The MOS protocol
is based on XML messages transmitted directly over TCP
connections, which allow the NCS to query, cue and play
media in media object servers and allow media object servers
to interact with the news rundown in the NCS. MOS is the
most widely deployed vendor-neutral broadcasting protocol,
but it covers a limited scope and some devices do not
have the resources to directly implement it, as exposed in
section III. In addition, NCS vendors often offer proprietary
protocols offering functionality not present in MOS.
Interoperability is a strong requirement by broadcasters,
and several standards were produced to this end. MXF (Me-
dia eXchange Format) [7] is a media container developed
for broadcasting applications that is widely adopted and
supported. Similarly, the development of technologies used
for video signal distribution in studios was largely driven by
standardization. For broadcast automation, vendor-specific
protocols have always been the norm. However, the Society
of Motion Picture and Television Engineers (SMPTE) has
recently published two standards that relate to automation
and device control: BXF (Broacast eXchange Format) [8],
and MDCF (Media Device Control Framework) [9]. BXF
was designed for the exchange of playout schedules, in
addition to extensive metadata. This protocol allows the
production of as-run information, used for billing adver-
tisers, and the request by devices for the provisioning of
content on the schedule (the actual provisioning protocol is
not specified). MDCEF, on the other hand, has a larger scope,
providing identification, description, and discovery for media
and media devices. Under MDCEF, devices expose a dynamic
set of capabilities, which can be invoked as Web Services.
The standard defines capabilities that handle description,
security and search functionality, but it yet does not define
any actual capability that pertains to media devices.
Historically, broadcasting automation has been focused
on five not strictly disjoint subareas: break and playout
automation [4], [8], [10], [11], news production [6], media
asset management [12], multichannel operation [13] and
master control [2]. For many devices, such as cameras
[14] and video routers [2], it is common that instead of
being remotely controlled by an automation system, panels

produced by the same vendor are used by operators to this
end. For automation systems, device control is only one
of the concerns of the controller device, the other being
managing the broadcaster’s data, such as schedules, news
items, or media rights and meta-data. In these subareas,
the common approach is for the controlling device to enact
processes statically defined by their designers using the
data that it manages. These static processes, albeit recon-
figured, are prone to become misaligned with changes in
the broadcaster’s workflow, requiring, at best, that parts of
the workflow be performed by humans.

In broadcasting environments, devices that offer a control
protocol can be seen as offering a service in a more liberal
sense. Since there is no common protocol and services
are not self-described, a service-oriented environment for
broadcasting, including process management, is still not a
common reality. An important step in this direction, together
with MDCE, is FIMS (Framework for Interoperable Media
Services)! [15], which defines a set of Web Services to
support media production, covering capture, transference,
transformation, quality assurance and media repositories.
FIMS is a clear departure from the traditional black box au-
tomation system, given that the specification clearly intends
the services to be controlled by an orchestration system.

III. CHALLENGES FOR SOA ADOPTION IN
BROADCASTING ENVIRONMENTS

Unlike other businesses, such as retail or consumer ser-
vices, SOA had a slow adoption in broadcasting. While Web
Services are present, they are far outnumbered by proprietary
protocols, some of which use serial communication lines,
limiting the communication to only the two participants
wired together. In the realm of IP, a problem is that while
MOS, the most popular protocol, specifies a parallel version
[16] based on SOAP Web Services, only one of the two
major NCS vendors supports it. That vendor lists [17] only
2 devices compatible through the SOAP variant, against 62
devices compatible through the sockets variant of MOS.

Many of the devices used in broadcasting also have no
additional resources to host Web Services; this is the case
for almost all devices that output or receive video signals.
Embedded devices offload real-time video processing to
specialized integrated circuits and FPGAs (Field Gate Pro-
grammable Arrays), but their microcontrollers do not have
enough resources to host a typical application server. De-
vices based on server-grade PC hardware, on the other hand,
often demand large amounts of memory and processing for
their main tasks. The Avid iNEWS, for example, demands
the MOS Gateway service to be hosted on a computer other
than the NCS main servers [18].

Most of the tasks performed on the master control area
of a broadcasting facility also demand low latency. For

IFIMS allows, but does not require, services to offer a list of MDCF
capabilities
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example, if a master switcher (usually an embedded device)
is programmed to “play” a playout device when a certain
input is selected, it will assume that the playout will respond
to the command in a small, predetermined time window.
While some protocols allow the client to specify a pre-roll
time or frame count, such window is not enough to protect
from service response jitter.

Finally, a challenge not unique to broadcasting is service
heterogeneity. For example, the play operation can be, at
first, seen as a simple universal operation. However, a vendor
may not only require additional parameters (such as a pre-
roll time), it may also ignore a play command if the device is
already playing a scheduled item, or may start playing the
next scheduled item. In the absence of a single universal
definition for each and all services, for safety, services
from different vendors must be considered as incompatible.
Efforts for standardization of control protocols are recent
and have small and sometimes overlapping scopes. New
products while offering some standardized protocols, also
present valuable functionality through proprietary protocols.

IV. RELATED WORK

SOA literature is mostly focused on Web Services,
and until recently, more specifically SOAP Web Services.
However, RESTful services, OSGi services, and service-
oriented standards for embedded devices may coexist in a
single heterogeneous environment. Similarly, in broadcasting
facilities, neither SOAP nor the standardization attempts
discussed in section II can be assumed. Three groups of
approaches were identified for dealing with heterogeneity in
SOA literature, and some representative works are discussed
in this section.

The first group contains approaches based on process en-
gines which abstract the heterogeneity. Pautasso and Alonso
[19] discuss a framework for managing and executing com-
posite processes with arbitrary non-SOAP services, integrat-
ing, in a case study, SOAP Web services, Unix processes
and Java code snippets. Lee et al. [20] also present an
extended BPEL engine including support for SOAP, REST
and OSGi services, as well as Android activities through
OSGi adapters.

In the second group, services are created to act as media-
tors. Battle and Benson [21] propose an SPARQL endpoint
for data obtained from SOAP and REST services. Focusing
on SoHo devices, Felisberto et al. [22] propose a middleware
and service broker allowing transparent interoperability be-
tween DLNA? and DPWS? services through virtual devices
that translate requests. Pourezza and Graham [23] use a
modified OSGi distribution with OSGi driver services that
expose UPnP and Jini services to OSGi and announce OSGi
services through the UPnP and Jini discovery protocols.

Zhttp://www.dIna.org/
3http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

Finally, in the third group, services are semantically an-
notated, and interaction with them occurs only at a semantic
level. This approach is suggested by the work of Roman et
al. [24], where WSMO-Lite is used to semantically annotate
descriptions of RESTful and SOAP services.

For the aforementioned works, a direct application to a
broadcasting environment would imply in devices being ex-
cluded from the integration architecture. From the challenges
enumerated in section III, low-latency and constrained re-
sources of the devices are challenges to all listed approaches.
The proposed integration architecture uses scripts in an
attempt to both introduce small latency and consume a small
amount of computational resources.

However, the use of scripts to formulate service compo-
sitions is not a novel concept as well. Paluska et al. [25]
present a framework for automatically composing adaptive
pervasive applications from scripts that implement a goal
and may require sub-goals. The approach could be easily
adapted to make the generated scripts independent from the
planner, avoiding some challenges in section III, but with
semantics and data heterogeneity issues still open.

V. THE INTEGRATION ARCHITECTURE FOR
BROADCASTING FACILITIES

The proposed integration architecture is centered on a
service repository in which devices (and on-site technicians)
publish semantic descriptions of services, their hosting de-
vices, and related code segments. When necessary, usually
when its is first set up or reconfigured, the client device sends
a service selection request to the repository, describing an
ideal service and including some non-functional constraints.
Service selection requests are responded with a stub that
allows the requesting device to execute the service in a
way analogous to calling a local procedure, independently
from the repository. This allows the transparent selection of
services in a heterogeneous environment, where a baseline
protocol, such as SOAP, is not available. The flexibility
provided by stubs is such that, a stub composed by the
repository may combine Web Services and a service hosted
on a device connected to the local serial port, in order to
achieve the functionality requested by the repository client.

To cope with a highly heterogeneous environment, both
data mediation and service mediation mechanisms are pro-
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Figure 1. Subset of an example of broadcast facility using the proposed

architecture.
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vided. Since only some protocols use XML for data repre-
sentation, and many use proprietary representations, a lower-
level approach based on converter functions is taken. For
service mediation, mediating stubs combine available ser-
vices to offer the functionality described by another service
profile. The mediator code itself provides the service, which
may be a stateful process involving the services requested
by the mediating stub.

Stubs and converters (described in more detail in subsec-
tion V-A) are written by the vendor or by on-site technicians
as short Lua* scripts. Technicians write these scripts in two
situations. First to integrate equipment as service providers
without cooperation from the vendor. And second, to publish
services specific to the broadcaster that are not associated
with any equipment. Lua provides a lightweight execution
environment, which can easily be embedded in resource-
constrained devices that will consume services. To further
assist these limited devices, the repository provides ready-
to-use composed stubs offering an interface compatible with
the proprietary protocols already in use by the devices.
Although the requests are based on semantic descriptions,
useful requests can be constructed from simple templates of
RDF serializations, without the need to actually process the
data.

A. Service Description

Services are described according to an ontology based on
OWL-S [3]. To cover concepts and details pertaining to the
environment and to the proposed architecture, new classes
and properties were introduced. In addition, the prototype
does not support WSDL grounding, processes, preconditions
and effects, present in the OWL-S ontology. The ontology
is split into 5 modules: addressing.owl for service end-
points and devices’ identifying addresses; code.owl for stubs,
converters and APIs; device.owl for devices; request.owl
for classes and properties exclusive for selection requests;
and service.owl that acts as the main module and defines
additional service properties.

Services may include the two properties shown in Fig-
ure 2, of which hasEndpoint is mandatory for the service to
be selected. The Endpoint class is a lower-level replacement
for OWL-S grounding: it holds an address and channel
configuration®, which are used by the stub to communicate
with the service.

A large portion of the ontology is devoted to modeling
stubs and converters, a subset of which is displayed on
Figure 3. Stub instances represent fragments of Lua code,
which may be used to invoke services with an particular
profile at an endpoint of a given type. The Lua code

“http://lua.org

SUART parameters, such as baud rate and stop bits, cannot be negotiated
by the devices. These are usually set by the hosting device which then
passively waits for clients.
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Figure 2. Service description (new elements in light blue)
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Figure 3.

defines an object that receives the service endpoint on the
constructor, and invokes the service through a call method.

MediatingStub instances do not allow access to a remote
service, but implement it themselves. Instead of requiring an
endpoint, their constructor requires a dictionary of composed
stubs providing access to the necessary services. These other
services, called mediation targets, are specified through ser-
vice selection requests® as part of the mediator description.

For the repository, to select a service means constructing
a tree of MediatingStub and Stub instances that will allow
the client to obtain the results and effects documented on
its request. The client receives not the tree, but a ready-
to-use composed Lua stub object created from this tree by
binding actual services to the stub objects and wiring the
inputs and outputs of the selected mediation targets with the
MediatingStub instances that required their selection. The
wiring process involves reordering of parameters (as the Lua
stub objects identify parameters based on the order in which
they appear in the method/function signature), and the use of
converter chains, later discussed, to perform data mediation.

To execute on the repository client’s Lua environment, the
stub may require some non-standard APIs in a version range.
Three version range types are allowed by the ontology: any
version, an exact version, or a semantic versioning7 range.
During selection, the APIs required by the stubs are checked
against the APIs present at the Lua environment provided
by the repository client.

In the absence of a base data representation mechanism
such as XML, the parameters to these stubs may require
incompatible representations of the same information and no
type system supporting down/up-casting and coercion can
be defined. Upcasting, also known as type polymorphism
in programming languages, is emulated by the use of Lua
functions that perform conversion from a more specific
representation to a more generic one, possibly discarding

These requests do not allow additional arbitrary SPARQL constraints.
Thttp://semver.org/
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information in the process. These functions are semanti-
cally described by the Upcaster class. For all other types
of data mediation, such as converting between equivalent
representations of the same data, Lua functions described
by the DataConverter class are used. The preservation of
information during the conversion performed by this second
type of function is assumed only to guide service selection
and composition, and is not enforced.

It is not practical for developers and users describing
services to provide upcasting and conversion functions to
(and from) all useful types. The repository automatically
discovers compositions, named converter chains, of these
functions to solve data heterogeneity issues that arise when
wiring parameters of stub objects.

B. Service Selection

Functional selection is performed by attempting to select
the service or tree of mediators, with minimal dissimilarity
to a requested hypothetical profile, that can be used to build
a composed stub. This profile includes the I/O parameters
and has as its rdf:type a functional class, which is a subclass
of the OWL-S Profile class. The dissimilarity heuristic is a
pair (d¢az, ddate) of taxonomic and data dissimilarity, which
can be ordered lexicographically.

The taxonomic dissimilarity between two functional
classes is computed as a refinement of the method pro-
posed in [26]. The numeric values O, 1 and 2 respectively
correspond to EXACT, PLUG-IN and SUBSUMES. For
PLUG-IN and SUBSUMES, a decimal value smaller than
1 is then added, according to how many subClassOf edges
separate candidate and request functional classes. Partitions
are created when the candidates share the same integer
divergence value, and the difference between the fractional
values of any two elements on a partition is less than a
constant p. Candidates in the same partition are considered
taxonomically equivalent.

To grade the dissimilarity between two distinct data types
a and b, the least-cost converter chain from a to b is used.
Every DataConverter in a chain has unitary value, while
every sequence of n consecutive Upcaster instances has
value 27*!. The sum of these values yields the chain cost.
When the source and target types are the same, no chain is
needed and the dissimilarity is zero.

The dissimilarity of the I/O parameters of a candidate
profile is defined by the parameter mapping between the
request and the candidate profile. Every request input will be
mapped to the candidate input requiring least-cost converter
chain, the same is done for every candidate output. Once the
least-cost chains are selected, the sum of all costs represents
the parameter dissimilarity of the candidate profile. However,
if a single parameter is selected as the target of more than
one source, then the dissimilarity is infinite, given that the
mapping is ambiguous.

As discussed in subsection V-A, mediating and regular
stubs may be nested in a tree, using converter chains to wire
parameters, and bound to specific services. The dissimilarity
of such tree is the sum of all individual nodes’ values.
The composed stub tree is a subtree of a larger, often
intractable, tree called selection tree. All candidates with
finite dissimilarity for every request posed by every node
are present in the selection tree, whose root is the client
requested profile. The desired subtree can be found by,
recursively, at every choice point, selecting the subtree with
smallest dissimilarity.

The challenge, however, is to find such subtree while
materializing as little as necessary of the selection tree.
Figure 4 shows the top-level algorithm that starts from a
single-node tree and controls its exploration by applying
operations in breadth-first order and monitoring predicates.
Each node has a dynamic working set of children for each
request it poses. These sets change as events resulting
from node operations propagate upward on the tree, and
contain only the best heuristically classified children. The
heuristic approximates the least taxonomic dissimilarity of
a composed stub tree branch rooted at the evaluated node.
The subtree reachable only from the working sets is called
the working tree.

I: expandQueue < EXPANDTREE(root)

2: while - isComposed(root) A —isDeadEnd(root) do
3: if isComplete(root) then

4: COMPOSETREE(ro0t)

5 end if

6: if ~isComposed(root) then

7: if isEmpty(expandQueue) then

8: expandQueue < EXPANDTREE(root)

9: else
10: expandQueue <— EXPANDTREE(expandQueue)
11: end if
12: end if

13: end while
14: return root = null ? null : ASSEMBLESTUB(root)

Figure 4. Main search control loop

The expand operation, when the node working set is
empty, computes the lowest, not yet computed candidate
taxonomic partition, and adds all the newly discovered child
nodes to the tree. In any case, the working set is added to
the queue for further expansion. A tree expansion ends when
the queue is exhausted (line 10), when the root becomes
complete (line 8) or a when a dead end is reached (line 2).
The tree is complete when no root or mediating stub node
has an empty working set. The parent-child links may be
missing parameter mappings, which are computed by the
composition operation (line 4) when executed on the child
node. When all nodes in the working tree have known
mappings, the selection tree is said to be composed, and
from it, the composed stub is assembled (line 14).

The solution, however, cannot be said to be optimal: in
face of the evaluated scenarios, a non-admissible heuristic
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is used when determining the working sets. The heuris-
tic dissimilarity is a (Piq., targets, depth) triple, where
all elements measure the maximal values observed in the
working tree: Py, is the representative dissimilarity of the
taxonomic partition and is by itself an admissible heuristic;
targets is the number of requests posed by the node; depth
is the node level compared with the selection tree root.
These triples are ordered lexicographically, ignoring depth.
However, when the depth of two heuristic values differ by
more than the value on Table I, the ordering between the
depth values prevails over the lexicographical one. This is
done to avoid deep exploration of exponentially sized trees,
such as those in subsection VI-B, before exploring higher
taxonomic dissimilarities.

Table I
DEPTH DIFFERENCE THRESHOLDS FOR DEPTH-BASED ORDERING
Level H P S
EXACT 0

Range | E

1

HALF EXACT 0.5 2 1
4

6

PLUG-IN [1,2) 2
SUBSUMES  [2,3) 4 2 1

—_

VI. EVALUATION

To evaluate the feasibility of the proposed architecture,
the service repository was implemented in Java 8, using
Stardog® 4 as the triple store. The repository only uses a
single triple store embedded within the application, a scheme
that eases deployment and reduces communication overhead,
but is neither scalable nor highly available. Interaction with
the server is possible through SOAP Web Services, but the
automated experiments bypass this layer. The data collected
mostly refers to wall-time required for the completion of key
tasks in service selection. To avoid interference in the time
measurements, before the samples are taken, the garbage
collector is run, and system I/O buffers are flushed with the
sync Unix utility. Stardog itself, as is usual with databases,
shows high query times for newly created databases or newly
started servers. To compensate for this, the first samples
taken are discarded. Additional countermeasures adopted
include using the JVM for a short set of measures and
randomizing the measure order.

In the proposed architecture, heterogeneity can be com-
pensated using either data converters or service mediators.
These approaches are complementary, but to simplify eval-
uation, scenarios are simulated in which heterogeneity is
completely handled by only one of the two. A plausible
situation which stresses the selection algorithm for both
approaches is to have a set of protocols (a collection of
service profiles and data types), where each provides data
or service mediation to a certain number of other protocols.

In the absence of adequate data on the number of vendors
present on a same broadcasting facility for a single type

Shttp://stardog.com/

of device, semantic service descriptions for this scenario
are randomly generated. The MOS protocol is used as
inspiration for the random protocols. MOS provides 45
services, which in the SOAP version use the “document”
binding style. The generated protocols also have 45 services,
but unlike MOS, each service has a return message (in
MOS all services respond with roAck) and the profile types
(functional classes of the services) are distributed in pairs
where one is made a subclass of the other.

The test parameters and results for data converters are pre-
sented in subsection VI-A, while subsection VI-B discusses
the same for services mediators. Both scripts’ used to collect
and process the data presented in the following sections, as
well as the prototype source code!? are available online.

A. Data Converters

To solve the aforementioned heterogeneous broadcasting
facility using data converters, each type of each protocol
is mapped with a single data converter to a single type
in other protocols as indicated by the choices parameter
which varies from 1 to 15 of the total 16 protocols. The
types and services of each protocol are isomorphic, the only
difference between the elements of different protocols being
the namespace of their IRIs. The performed request consists
of a profile with the functional class from a (target) protocol,
and the parameter types from a (source) protocol. To satisfy
the request, a stub must be assembled to receive the types
from the source protocol and convert them before invoking
the service of the target protocol. An additional variant of
this test was also performed, in which the request was such
that there were no possible converter chains. To reach this
conclusion, the algorithm had to explore a significant portion
of the conversion and upcasting graphs.

Table II
STATISTICS FOR CONVERTER-BASED SERVICE SELECTION

Path search (ms) Remainder (ms)
has path min max min max

yes 0.341 (0.69%)  1.155 (1.33%) | 49.228 86.725
no 0.023 (0.01%)  7.286 (2.73%) | 160.981  266.516

As shown in Table II, since the discovery of the optimal
conversion paths uses in-memory graphs, finding the paths
(or their absence) in this test is not particularly challenging.
The remainder of the selection process includes performing
SPARQL queries to obtain the candidate service, the pa-
rameter types of the request and the candidate profiles, and
the APIs requested by the stub registered for the profile.
When the converter path does not exist, additional SPARQL
queries need to be performed searching for services at higher
taxonomic dissimilarity levels, without success.

%https://bitbucket.org/alexishuf/broadcast/
10https://bitbucket.org/alexishuf/broadcast-scc-tests/
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B. Service mediators

For each profile of each of the 8 protocols, bridges
mediating stubs that provide the profile using profiles of
other protocols are generated in two phases. First, all me-
diators that require a designated target protocol’s profiles
are generated. Secondly, all mediators using profiles of all
protocols but the designated target, are generated. After the
repository is populated, a selection request using a profile of
a non-target protocol and requiring the services used by the
stub to be hosted on the target protocol’s device, is issued.

In the first set of experiments, shown in Figure 5, there
is a mediator with taxonomic dissimilarity of O that fulfills
the request. The number of nodes in the selection tree to
be explored, ignoring the non-admissible component of our
heuristic, is O(bp) where b is the number of bridges per
protocol and p the number of protocols (8).
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Figure 5. Service selection time on a mediating stub scenario. The best
composition has a taxonomic dissimilarity of O

In the tests shown in Figure 5, despite the solution
being found with a linear number of nodes explored, the
selection tree is sized O((bp)P). If the best match in the
repository has a taxonomic divergence of 0.5, without the
non-admissible component of the heuristic, O((bp)?) nodes
must be explored. The results using only the non-admissible
heuristic for this variation are shown in Figure 6.
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Figure 6. Service selection time on a mediating stub scenario. The best

composition has a taxonomic dissimilarity of 0.5

In all test scenarios, the majority of the selection time

is spent processing SPARQL queries. For Figure S5a the
SPARQL queries amount to an average of 85.6% with o =
2%, and respectively 86.1% and 4.6% for Figure 6. The
coefficient of variation for each of these portions is similar,
however, the wall time measurement may be vulnerable to
background threads controlled by Stardog.

The prototype has no notion of protocols, which are
metaphors used only to generate test data. Therefore, all
services are considered unrelated, and the non-functional
constraint of the device in which selected services must be
hosted is treated as an opaque SPARQL group pattern. Due
to the use of SPARQL to express non-functional constraints,
and richness of the RDF service descriptions, it is not
viable to create a proprietary in-memory graph to manage
all data. Moreover, the prototype does not exploit the fact
that all functional aspects of service selection, centered on
the service profiles, are independent from the actual services
and devices found at a broadcasting facility.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a SOA-based solution for device
integration in broadcasting production facilities. In tackling
the challenges of such technologically heterogeneous envi-
ronment, an approach building on OWL-S and Lua code
composition was taken. While this is not the first attempt to
apply SOA in broadcasting, no documented attempt to use
semantic Web Services or automated service composition in
this environment was found. The present work also attempts
to better integrate the Web and the non-Web services, which
are the majority in the environment, instead of setting up
bridge Web Services. Despite our focus on broadcasting
facilities, some ideas evaluated in the present work, could be
useful in other environments without a single base protocol,
such as small office and home automation, or professional
environments with legacy software and hardware.

While no appropriate quantitative data could be obtained
to estimate an acceptable time limit for stub composition,
the experimental results hint the time required for a device
to obtain stubs for all the services it will invoke, could be
acceptable for converter-based integration but inconveniently
high for mediator-based integration. There are two common
situations in which a device would query the repository
for a stub: when it is set up in the broadcaster’s studio,
and when one of the services used by the device becomes
faulty or unavailable. A future work for the later situation is
to monitor QoS parameters and faults of the services used
by a stub (the repository could perform the monitoring for
constrained devices) and use a simpler algorithm to find
replacements only for faulty components.

Being a prototype, aspects such as security and availability
were not addressed. Any attacker with access to the local
network may use the repository to remotely inject code on
the broadcaster devices. As for availability, the repository is
a monolithic entity and can be a single point of failure.
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Compared with related works in the broadcasting industry
and in SOA literature, our prototype is positioned as a
complementary approach. Lua stubs were the approach that
covered more ground considering the challenges identified,
but a hypothetical commercial product could include ideas
from many of the related works. For example, stubs could
be generated from semantically annotated WSDL files and
converters from XSD and XSLT files. Also, service com-
positions created by the repository could be made available
through MDCF and DPWS discovery mechanisms by virtual
devices. Finally, the broadcaster could define his/her process
using abstract services, which would be selected from the
repository and executed by an extended BPEL engine.
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